1,769 research outputs found

    Dictionary writing system (DWS) plus corpus query package (CQP): the case of TshwaneLex

    Get PDF
    In this article the integrated corpus query functionality of the dictionary compilation software TshwanelLex is analysed. Attention is given to the handling of both raw corpus data and annotated corpus data. With regard to the latter it is shown how, with a minimum of human effort, machine learning techniques can be employed to obtain part-of-speech tagged corpora that can be used for lexicographic purposes. All points are illustrated with data drawn from English and Northern Sotho. The tools and techniques themselves, however, are language-independent, and as Such the encouraging outcomes of this study are far-reaching

    Building trainable taggers in a web-based, UIMA-supported NLP workbench

    Get PDF
    Argo is a web-based NLP and text mining workbench with a convenient graphical user interface for designing and executing processing workflows of various complexity. The workbench is intended for specialists and nontechnical audiences alike, and provides the ever expanding library of analytics compliant with the Unstructured Information Management Architecture, a widely adopted interoperability framework. We explore the flexibility of this framework by demonstrating workflows involving three processing components capable of performing self-contained machine learning-based tagging. The three components are responsible for the three distinct tasks of 1) generating observations or features, 2) training a statistical model based on the generated features, and 3) tagging unlabelled data with the model. The learning and tagging components are based on an implementation of conditional random fields (CRF); whereas the feature generation component is an analytic capable of extending basic token information to a comprehensive set of features. Users define the features of their choice directly from Argo’s graphical interface, without resorting to programming (a commonly used approach to feature engineering). The experimental results performed on two tagging tasks, chunking and named entity recognition, showed that a tagger with a generic set of features built in Argo is capable of competing with taskspecific solutions.

    A Robust Transformation-Based Learning Approach Using Ripple Down Rules for Part-of-Speech Tagging

    Full text link
    In this paper, we propose a new approach to construct a system of transformation rules for the Part-of-Speech (POS) tagging task. Our approach is based on an incremental knowledge acquisition method where rules are stored in an exception structure and new rules are only added to correct the errors of existing rules; thus allowing systematic control of the interaction between the rules. Experimental results on 13 languages show that our approach is fast in terms of training time and tagging speed. Furthermore, our approach obtains very competitive accuracy in comparison to state-of-the-art POS and morphological taggers.Comment: Version 1: 13 pages. Version 2: Submitted to AI Communications - the European Journal on Artificial Intelligence. Version 3: Resubmitted after major revisions. Version 4: Resubmitted after minor revisions. Version 5: to appear in AI Communications (accepted for publication on 3/12/2015

    Model Transfer for Tagging Low-resource Languages using a Bilingual Dictionary

    Full text link
    Cross-lingual model transfer is a compelling and popular method for predicting annotations in a low-resource language, whereby parallel corpora provide a bridge to a high-resource language and its associated annotated corpora. However, parallel data is not readily available for many languages, limiting the applicability of these approaches. We address these drawbacks in our framework which takes advantage of cross-lingual word embeddings trained solely on a high coverage bilingual dictionary. We propose a novel neural network model for joint training from both sources of data based on cross-lingual word embeddings, and show substantial empirical improvements over baseline techniques. We also propose several active learning heuristics, which result in improvements over competitive benchmark methods.Comment: 5 pages with 2 pages reference. Accepted to appear in ACL 201

    Cell line name recognition in support of the identification of synthetic lethality in cancer from text

    Get PDF
    Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers
    • …
    corecore