3 research outputs found

    Efficient Scheduling of Plantation Company Workers using Genetic Algorithm

    Get PDF
    Workers at large plantation companies have various activities. These activities include caring for plants, regularly applying fertilizers according to schedule, and crop harvesting activities. The density of worker activities must be balanced with efficient and fair work scheduling. A good schedule will minimize worker dissatisfaction while also maintaining their physical health. This study aims to optimize workers' schedules using a genetic algorithm. An efficient chromosome representation is designed to produce a good schedule in a reasonable amount of time. The mutation method is used in combination with reciprocal mutation and exchange mutation, while the type of crossover used is one cut point, and the selection method is elitism selection. A set of computational experiments is carried out to determine the best parameters’ value of the genetic algorithm. The final result is a better 30 days worker schedule compare to the previous schedule that was produced manually.

    Mathematical Model and Meta-Heuristic Algorithm for Dual Resource Constrained Hybrid Flow-Shop Scheduling Problem with Job Rejection

    Get PDF
    In the real world, firms with hybrid flow-shop manufacturing environment generally facethe human resource constraint, salary cost increasment and efforts to make better use oflabor, in addition to machine constraint. Given the limitations of these resources, productdelivery requierements to customers have made the job rejection essential in order to meetdistinct customer requirements. Therefore, this research has studied the dual resourceconstrained hybrid flow-shop scheduling problem with job rejection in order to minimizethe total net cost (the sum of the total rejection cost and the total tardiness cost of jobs)which is widely used in many industries. In this article, a mixed integer linear programmingmodel has developed for the research problem. In addition, an improved sooty ternoptimization algorithm (ISTOA) has proposed to solve the large-sized problems as well asa decoding method due to the NP-hardness of the problem. In order to evaluate theproposed optimization algorithm, five well-known algorithms in the literature including(immunoglobulin-based artificial immune system (IAIS), genetic algorithm (GA), discreteartificial bee colony (DABC), improved fruit fly optimization (IFFO), effective modifiedmigrating birds optimization (EMBO)) have adapted with the proposed problem. Finally,the performance of the proposed optimization algorithm has investigated against theadapted algorithms. Results and evaluations show the good performance of the improvedsooty tern optimization algorithm

    Learning variable neighborhood search for a scheduling problem with time windows and rejections

    No full text
    Variable neighborhood search is a local search metaheuristic that uses sequentially different neighborhood structures. This method has been successfully applied to various types of problems. In this work, variable neighborhood search is enhanced with a learning mechanism which helps to drive the search toward promising areas of the search space. The resulting method is applied to a single-machine scheduling problem with rejections, setups, and earliness and tardiness penalties. Experiments are conducted for instances from the literature. They show on the one hand the benefit of the learning mechanism (in terms of solution quality and robustness). On the other hand, the proposed method significantly outperforms state-of-the-art algorithms for the considered problem. Moreover, its flexibility allows its straightforward adaptation to other combinatorial optimization problems
    corecore