268 research outputs found

    Nonparametric Markovian Learning of Triggering Kernels for Mutually Exciting and Mutually Inhibiting Multivariate Hawkes Processes

    Full text link
    In this paper, we address the problem of fitting multivariate Hawkes processes to potentially large-scale data in a setting where series of events are not only mutually-exciting but can also exhibit inhibitive patterns. We focus on nonparametric learning and propose a novel algorithm called MEMIP (Markovian Estimation of Mutually Interacting Processes) that makes use of polynomial approximation theory and self-concordant analysis in order to learn both triggering kernels and base intensities of events. Moreover, considering that N historical observations are available, the algorithm performs log-likelihood maximization in O(N)O(N) operations, while the complexity of non-Markovian methods is in O(N2)O(N^{2}). Numerical experiments on simulated data, as well as real-world data, show that our method enjoys improved prediction performance when compared to state-of-the art methods like MMEL and exponential kernels

    Efficient Non-parametric Bayesian Hawkes Processes

    Full text link
    In this paper, we develop an efficient nonparametric Bayesian estimation of the kernel function of Hawkes processes. The non-parametric Bayesian approach is important because it provides flexible Hawkes kernels and quantifies their uncertainty. Our method is based on the cluster representation of Hawkes processes. Utilizing the stationarity of the Hawkes process, we efficiently sample random branching structures and thus, we split the Hawkes process into clusters of Poisson processes. We derive two algorithms -- a block Gibbs sampler and a maximum a posteriori estimator based on expectation maximization -- and we show that our methods have a linear time complexity, both theoretically and empirically. On synthetic data, we show our methods to be able to infer flexible Hawkes triggering kernels. On two large-scale Twitter diffusion datasets, we show that our methods outperform the current state-of-the-art in goodness-of-fit and that the time complexity is linear in the size of the dataset. We also observe that on diffusions related to online videos, the learned kernels reflect the perceived longevity for different content types such as music or pets videos

    Multivariate Hawkes Processes for Large-scale Inference

    Full text link
    In this paper, we present a framework for fitting multivariate Hawkes processes for large-scale problems both in the number of events in the observed history nn and the number of event types dd (i.e. dimensions). The proposed Low-Rank Hawkes Process (LRHP) framework introduces a low-rank approximation of the kernel matrix that allows to perform the nonparametric learning of the d2d^2 triggering kernels using at most O(ndr2)O(ndr^2) operations, where rr is the rank of the approximation (r≪d,nr \ll d,n). This comes as a major improvement to the existing state-of-the-art inference algorithms that are in O(nd2)O(nd^2). Furthermore, the low-rank approximation allows LRHP to learn representative patterns of interaction between event types, which may be valuable for the analysis of such complex processes in real world datasets. The efficiency and scalability of our approach is illustrated with numerical experiments on simulated as well as real datasets.Comment: 16 pages, 5 figure

    Modeling Adoption and Usage of Competing Products

    Full text link
    The emergence and wide-spread use of online social networks has led to a dramatic increase on the availability of social activity data. Importantly, this data can be exploited to investigate, at a microscopic level, some of the problems that have captured the attention of economists, marketers and sociologists for decades, such as, e.g., product adoption, usage and competition. In this paper, we propose a continuous-time probabilistic model, based on temporal point processes, for the adoption and frequency of use of competing products, where the frequency of use of one product can be modulated by those of others. This model allows us to efficiently simulate the adoption and recurrent usages of competing products, and generate traces in which we can easily recognize the effect of social influence, recency and competition. We then develop an inference method to efficiently fit the model parameters by solving a convex program. The problem decouples into a collection of smaller subproblems, thus scaling easily to networks with hundred of thousands of nodes. We validate our model over synthetic and real diffusion data gathered from Twitter, and show that the proposed model does not only provides a good fit to the data and more accurate predictions than alternatives but also provides interpretable model parameters, which allow us to gain insights into some of the factors driving product adoption and frequency of use

    Uncovering Causality from Multivariate Hawkes Integrated Cumulants

    Get PDF
    We design a new nonparametric method that allows one to estimate the matrix of integrated kernels of a multivariate Hawkes process. This matrix not only encodes the mutual influences of each nodes of the process, but also disentangles the causality relationships between them. Our approach is the first that leads to an estimation of this matrix without any parametric modeling and estimation of the kernels themselves. A consequence is that it can give an estimation of causality relationships between nodes (or users), based on their activity timestamps (on a social network for instance), without knowing or estimating the shape of the activities lifetime. For that purpose, we introduce a moment matching method that fits the third-order integrated cumulants of the process. We show on numerical experiments that our approach is indeed very robust to the shape of the kernels, and gives appealing results on the MemeTracker database
    • …
    corecore