2,921 research outputs found

    A New Hierarchical Redundancy Eliminated Tree Augmented Naive Bayes Classifier for Coping with Gene Ontology-based Features

    Get PDF
    The Tree Augmented Naive Bayes classifier is a type of probabilistic graphical model that can represent some feature dependencies. In this work, we propose a Hierarchical Redundancy Eliminated Tree Augmented Naive Bayes (HRE-TAN) algorithm, which considers removing the hierarchical redundancy during the classifier learning process, when coping with data containing hierarchically structured features. The experiments showed that HRE-TAN obtains significantly better predictive performance than the conventional Tree Augmented Naive Bayes classifier, and enhanced the robustness against imbalanced class distributions, in aging-related gene datasets with Gene Ontology terms used as features.Comment: International Conference on Machine Learning (ICML 2016) Computational Biology Worksho

    Locally weighted learning: How and when does it work in Bayesian networks?

    Full text link
    © 2016, Taylor and Francis Ltd. All rights reserved. Bayesian network (BN), a simple graphical notation for conditional independence assertions, is promised to represent the probabilistic relationships between diseases and symptoms. Learning the structure of a Bayesian network classifier (BNC) encodes conditional independence assumption between attributes, which may deteriorate the classification performance. One major approach to mitigate the BNC’s primary weakness (the attributes independence assumption) is the locally weighted approach. And this type of approach has been proved to achieve good performance for naive Bayes, a BNC with simple structure. However, we do not know whether or how effective it works for improving the performance of the complex BNC. In this paper, we first do a survey on the complex structure models for BNCs and their improvements, then carry out a systematically experimental analysis to investigate the effectiveness of locally weighted method for complex BNCs, e.g., tree-augmented naive Bayes (TAN), averaged one-dependence estimators AODE and hidden naive Bayes (HNB), measured by classification accuracy (ACC) and the area under the ROC curve ranking (AUC). Experiments and comparisons on 36 benchmark data sets collected from University of California, Irvine (UCI) in Weka system demonstrate that locally weighting technologies just slightly outperforms unweighted complex BNCs on ACC and AUC. In other words, although locally weighting could significantly improve the performance of NB (a BNC with simple structure), it could not work well on BNCs with complex structures. This is because the performance improvements of BNCs are attributed to their structures not the locally weighting

    ADMIT - A Web-Based System to Facilitate Graduate Admission

    Get PDF
    In this paper we describe ADMIT, a software application developed to assist the graduate admissions process at the University of Pittsburgh School of Information Sciences (SIS). ADMIT uses a Bayesian network model built from historical admissions data and academic performance records to predict how likely each applicant is to succeed. The system rank-orders applicants based on the probability of their success in the Master of Science in Information Science (MSIS) program and presents results as an ordered list and as a histogram to the admission committee members. The system also enables users to see a graphical representation of the model (a causal graph) and observe how each input data point affects the system’s suggestions

    Bayesian Approach For Early Stage Event Prediction In Survival Data

    Get PDF
    Predicting event occurrence at an early stage in longitudinal studies is an important and challenging problem which has high practical value. As opposed to the standard classification and regression problems where a domain expert can provide the labels for the data in a reasonably short period of time, training data in such longitudinal studies must be obtained only by waiting for the occurrence of sufficient number of events. On the other hand, survival analysis aims at finding the underlying distribution for data that measure the length of time until the occurrence of an event. However, it cannot give an answer to the open question of how to forecast whether a subject will experience event by end of study having event occurrence information at early stage of survival data?\u27\u27. This problem exhibits two major challenges: 1) absence of complete information about event occurrence (censoring) and 2) availability of only a partial set of events that occurred during the initial phase of the study. Thus, the main objective of this work is to predict for which subject in the study event will occur at future based on few event information at the initial stages of a longitudinal study. In this thesis, we propose a novel approach to address the first challenge by introducing a new method for handling censored data using Kaplan-Meier estimator. The second challenge is tackled by effectively integrating Bayesian methods with an Accelerated Failure Time (AFT) model by adapting the prior probability of the event occurrence for future time points. In another word, we propose a novel Early Stage Prediction (ESP) framework for building event prediction models which are trained at early stages of longitudinal studies. More specifically, we extended the Naive Bayes, Tree-Augmented Naive Bayes (TAN) and Bayesian Network methods based on the proposed framework, and developed three algorithms, namely, ESP-NB, ESP-TAN and ESP-BN, to effectively predict event occurrence using the training data obtained at early stage of the study. The proposed framework is evaluated using a wide range of synthetic and real-world benchmark datasets. Our extensive set of experiments show that the proposed ESP framework is able to more accurately predict future event occurrences using only a limited amount of training data compared to the other alternative prediction methods

    ADMIT - a web-based system to facilitate graduate admission process

    Get PDF
    In this paper we describe ADMIT, a software application developed to assist the graduate admissions process at the University of Pittsburgh School of Information Sciences (SIS). ADMIT uses a Bayesian network model built from historical admissions data and academic performance records to predict how likely each applicant is to succeed. The system rank-orders applicants based on the probability of their success in the Master of Science in Information Science (MSIS) program and presents results as an ordered list and as a histogram to the admission committee members. The system also enables users to see a graphical representation of the model (a causal graph) and observe how each input data point affects the system’s suggestions
    • …
    corecore