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CHAPTER 1

INTRODUCTION

1.1 Overview

Developing effective prediction models to estimate the outcome of a particular event of

interest is a critical challenge in various application domains such as healthcare, reliability,

engineering, etc [2, 22, 32]. In longitudinal studies, event prediction is an important area

of research where the goal is to predict the event occurrence during a specific time period

of interest [21]. Obtaining training data for such a time-to-event problem is a daunting

task. Such studies also encounter incomplete data which occurs because of loss to follow

(also known as censoring). In another words, the time to the event occurrence is not

necessarily observed for all instances in the study. Thus, building event forecasting

models in the presence of censored data is an important and challenging task which has

significant practical value in longitudinal studies.

One of the primary challenges in the survival analysis studies is that as opposed to

the standard supervised learning problems where a domain expert can provide labels

in a reasonable amount of time, training data for these longitudinal studies must be

obtained only by waiting for the occurrence of sufficient number of events. Therefore,

the ability to leverage only a limited amount of available information at early stages of

longitudinal analysis to forecast the event occurrence in future time points is an important

and challenging research task.

The main objective of this work is to predict for which subject in the study event

will occur at future based on few event information at the initial stages of a longitudi-

nal study. In this thesis, we introduce a new method for handling censored data using

Kaplan-Meier estimator. We also propose a novel Early Stage Prediction (ESP) frame-

work for building event prediction models which are trained at early stages of longitudinal
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studies. More specifically, we extended the Naive Bayes, Tree-Augmented Naive Bayes

(TAN) and Bayesian Network methods based on the proposed framework, and devel-

oped three algorithms, namely, ESP-NB, ESP-TAN and ESP-BN, to effectively predict

event occurrence using the training data obtained at early stage of the study. The pro-

posed framework is evaluated using a wide range of synthetic and real-world benchmark

datasets. Our extensive set of experiments show that the proposed ESP framework is

able to more accurately predict future event occurrences using only a limited amount of

training data compared to the other alternative methods.

This thesis is organized as follows. The rest of this chapter discusses the motiva-

tion and statement of problem along with contribution of this research. In chapter 2 we

propose the Bayesian approach for survival data early stage event prediction. We deve-

lope Naive Bayes, Tree-Agumented Tree (TAN) and Bayesian Network to address this

problem. Chapter 3 demonstrates the experimental results and shows the practical sig-

nificance of our work using different benchmark and real-word dataset. Finally, chapter

4 concludes the discussion along with some future research directions in this area.

1.2 Motivation

It has become a common practice in many application domains to collect data over

a period of time and record any interesting events that occur within this time. Survival

analysis aims at finding the underlying distribution for data that measure the length

of time until the occurrence of an event. In another word, the primary objective of

such longitudinal studies is to determine the probability of the occurrence of a particular

event of interest within a specific unseen time point. However, it cannot give an answer

to the open question of “how to forecast whether a subject will experience event by end

of study having event occurrence information at early stage of survival data?”. This

problem exhibits two major challenges: 1) absence of complete information about event

occurrence (censoring) and 2) availability of only a partial set of events that occurred
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during the initial phase of the study.

In order to have better idea, let us consider the following real-world applications which

motivate the early stage time-to-event predictions.

• In the healthcare domain, let us say that there is a new treatment option (or drug)

which is available and one would like to study the effect of such a treatment on a

particular group of patients in order to understand the efficacy of the treatment.

This patient group is monitored over a period of time and an event here corresponds

to the patient being hospitalized because the treatment has failed. The effectiveness

of this treatment must be estimated as early as possible when there are only a few

hospitalized patients.

• Reliability prediction focuses on developing an accurate models that can estimate

how reliable a newly released product will be. An event here corresponds to the

time taken for a device to fail. In such applications, it is desirable to be able to

estimate which devices will fail and if so, when they will fail. If such models can

be learned using information from only a few device failures, then early warnings

can be given about future failures.

• In credit score modeling applications, it is challenging to have an accurate estima-

tion of whether a customer will default or not and if they default, when it is going

to happen? If a prediction model can be accurately built using only few default

individuals, then better precautions can be taken against those who will most likely

default in the future.

These practical scenarios clearly emphasize the need to build algorithms that can

effectively make predictions of events using the training data that contains only a few

events (at an early stage). More precisely, the goal here is to predict the event occurrence

for a time beyond the observation time window where only a few events have occurred.
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Thus, the primary goal of this paper is to develop a method that can use only a limited

amount of available information at the initial phase of a longitudinal study to forecast

the event occurrence at future time points.

For a better understanding of the complexities and concerns related to this problem,

let us consider an illustrative example shown in Figure 1.1. In this example, a longitudinal

study is conducted on 6 subjects and the information for event occurrence until time tc

is recorded, where only subjects S2 and S5 had experienced the event. The goal of our

work is to predict the event occurrence by time tf (e.g. end of study). It should be noted

that except subjects S2 and S5, all other are considered to be censored at tc (marked by

‘X’). Also, event will be occurred for subjects S1 and S6 within the time period t.

Figure 1.1: An illustration to demonstrate the problem of event forecasting at time tf
(e.g. end of study) using the information only until time tc.

This scenario clearly motivates the need for building algorithms that can effectively

forecast events using the training data at time tc when only a few events have occurred.

This problem is an important one in the domain of longitudinal studies since the only way

to collect reliable data is to wait for sufficient period of time till complete information

about event occurrence acquired.

The recently proposed popular variants in the machine learning field such as classi-

fication, semi-supervised learning, transfer learning, imbalance learning and multi-task
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learning are not suitable for tackling this problem primarily due to the fact that obtaining

a labeled training set at the end of the study is not feasible since the data is available

only until tc. On the other hand, advanced statistical techniques, especially in the field

of survival analysis, do not have the ability to handle the problem of predicting event

occurrence for a time later than the observation time. The reason is that the probabil-

ity of event provided by survival model is valid only for the specific observed time. It

should be noted that this problem is completely different from the time series forecast-

ing problem since the goal here is to predict the outcome of (binary) event occurrence

for each subject for a time which is much beyond the observation time (as opposed to

merely predicting the next time step value which is typically done in the standard time

series forecasting models). Also such longitudinal survival data normally has missing

information on events during the observation time. This incompleteness in events makes

it difficult for standard machine learning methods to model such data. While ignoring

this censored data will provide a suboptimal model because of neglecting the available

information, treating censoring time as the actual time of event occurrence will provide

an underestimate of the true performance of the model.

1.3 Thesis Contributions

In order to find an answer for the problem discussed above, we introduce an intuitive

technique to handle the censoring problem in the longitudinal survival data. We also

develop a Bayesian framework for early stage event prediction to tackle the problem of

lack of sufficient training data on event occurrence in the initial phases (early stage) of

longitudinal studies. Thus the main contributions of this thesis can be summarized as

follows:

• Develop a new labelling method to handle censoredness in longitudinal studies using

the Kaplan-Meier estimator.

• Propose an Early Stage Prediction (ESP) framework which estimates the prob-
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ability of event occurrence for a future time point using different extrapolation

techniques.

• Develop a probabilistic algorithm based on Naive Bayes, Tree-Augmented Naive

Bayes (TAN) and Bayesian Network, called ESP-NB, ESP-TAN and ESP-BN re-

spectively, for early-stage event prediction by adapting the posterior probability of

event occurrence.

• Evaluate the proposed algorithms using several synthetic and real-world bench-

mark datasets and compare the effectiveness of the proposed methods with various

classification and survival methods.
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CHAPTER 2

PROPOSED BAYESIAN APPROACH

In this chapter we introduce our proposed Bayesian approach for handling early stage

event prediction. As discussed in previous chapter predicting event occurrence at an early

stage in longitudinal studies is a challenging problem. It is in contrast with the standard

classification and regression problems where the labels for the data can be provided in a

reasonably short period of time. Thus, for this longitudinal studies training data must be

obtained only by waiting for the occurrence of sufficient number of events. On the other

hand survival analysis method do not have the ability to handle the problem of predicting

event occurrence for a time later than the observation time because the probability of

event provided by survival model is valid only for the specific observed time. Therefore,

the main objective of this chapter is to propose a framework to predict for which subject

in the study event will occur at future based on few event information at the initial stages

of a longitudinal study. Before we discuss the framework in detail, the related work in the

areas of using machine learning techniques for survival analysis will be briefly presented.

2.1 Related Literature

Survival analysis is a subfield of statistics where a wide range of techniques have been

proposed to model time-to-event data [37] in which the dependent variable is subject to

censoring (e.g. failure, death, admission to hospital, emergence of disease etc.) [33]. The

fact is Ordinary Least-Squares (OLS), the most common method for solving regression

problem based on minimizing sum of squared error, does not work in the presence of

censoring because it is not possible to estimate the error between the true response

and the predicted response that comes from regression model [36]. However, while we

do not know the ordinate in censored observation, the well-known likelihood method

which finds the probability that the experiment turned out the way it did, can solve
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the censored regression problem [5]. Different techniques have been proposed based on

Maximum Likelihood Estimation (MLE) to overcome the difficulty of handling censored

data [11, 29].

There has been an increasing interest in adapting popular machine learning techniques

to survival data [35]. However, longitudinal data cannot be modeled solely by traditional

classification or regression approaches since certain observations have event status (or

class label as event) and the rest have an unknown status up until that specific time

of study. The censored observations in survival data might look similar to unlabelled

samples in classification or unknown response in regression problem in the sense that

status or time-to-event is not known for some observations. Such censored data have to

be handled with a special care within any machine learning method in order to have an

accurate prediction. Also, for censored data in survival analysis we have information up

to a certain time point before censoring occurs and this information should be included

in the model in order to obtain the most optimal result. Hence, the standard semi-

supervised techniques [7, 50] are not directly applicable for this problem.

Several remarkable adjusted machine learning approaches have been proposed recently

to address censored survival data issue. Decision trees [18, 39, 46] and Artificial Neural

Networks (ANN) [4, 9, 10, 14] for censored data represent some of the earliest works in this

field. Well-known Support Vector Machines (SVM) have been adopted to model survival

data. Most of these methods treat the problem as regression [28, 41, 42, 46]. Other

studies try to formalize the problem under the classification setting [15, 40]. However,

comparison of the performance of these approaches yield no significant improvements over

standard Cox model either. There are also few other studies aim at handling censored

data during a preprocessing step by giving some weights to the censored observations

[44, 51]. In this thesis, we tackle the problem of censoring using Kaplan-Meier method

[27] to estimate the probability of event and probability of censoring for each censored
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subject. Such an intuitive approach can be easily applied on survival data before any

further analysis is performed.

One of the popular choice in the predictive modeling literature is the Bayesian models

including Naive Bayes and Bayesian Network where they have been used widely for clas-

sification [16] and successfully applied in many domains [17]. However, there has been

only a little work in the literature using Bayesian methods for survival data [1, 35, 49].

Bayesian networks can visually represent all the relationships between the variables which

makes it interpretable for end user. It is in contrast with simple Naive Bayes method

that has the independence assumption between all features [16]. Despite the applica-

bility of Bayesian network in the survival analysis domain, limited number of research

efforts exist for tackling the censored data challenges. The authors of [34] developed a

Bayesian neural network approach to model censored data. [43] gives weight to censored

instances in order to learn Bayesian networks from survival data. Recently, [1] adapts a

Bayesian network for survival data using an approach called inverse probability of cen-

sored weighting (IPCW) for each of the record in the dataset to handle the censoring

issue.

Our work is significantly different from these previous studies since none of these

works perform forecasting of event occurrence for a time beyond the observation time.

They basically use the training data that is collected at the same time point as the test

data. The idea is to take advantage of generative component of a Naive Bayes, Tree-

Augmented Naive Bayes (TAN) and Bayesian network to build a predictive probabilistic

model [25] which will allow us to adapt the prior probability of event for different time

points during forecasting. Also, it is important to note that discriminative models such

as support vector machines or logistic regression are not suitable for the forecasting

framework due to the lack of the prior probability component. On the other hand, for

discriminative models there is no need to model the distribution of the observed variables.
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Thus, they cannot be a good choice when we want to express more complex relationships

between the dependent variable and other attributes [31].

2.2 Preliminaries

This section introduces some of the preliminaries required to comprehend the pro-

posed framework. First the notations used in the study and problem formulation are

described. Next, some basics about survival analysis are explained. Finally, more de-

tails are provided about Naive Bayes, Tree-Augmented Naive Bayes (TAN) and Bayesian

Network as the vital components of the proposed method for predicting event in survival

data at an early stage of studies.

2.2.1 Problem Formulation

We begin by presenting the basic concepts and notations for survival analysis and

Bayesian networks. Table 2.1 describes the notations used in this paper.

Table 2.1: Notations used in this thesis

Name Description

n number of subjects

m number of features

xi 1×m matrix of feature vectors for subject i

T n× 1 vector of event times

C n× 1 vector of last follow up times

O n× 1 vector of observed time which is min(T,C)

δ n× 1 binary vector for event status

tc specified time until which information is available

tf desired time at which the forecast of future events is made

yi(t) event status for subject i at time t

F (t) Cumulative event probability at time t

S(t) Survival probability at time t

Let us consider a longitudinal study where the data about n independent subjects are

available. Let the features are represented by a m-dimensional vector xi = 〈xi1, ..., xim〉

where xij is the jth feature for subject i. For each subject i, we can define Ti as the event
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time, and Ci as the last follow-up time or censoring time (the time after which the subject

has left the study). For all the subjects i = {1, ..., n}, Oi denotes the observed time which

is defined as min(Ti, Ci). Then, the event status can be defined as δi = I{Ti ≤ Ci}. Thus,

a longitudinal dataset can be represented as D = {xi, Ti, δi; i = 1, ...n} where xi ∈ Rm,

Ti ∈ R+, δi ∈ {0, 1}.

It should be noted that we only have the information for few events until the time

tc. Our aim is to predict the event status at time tf where tf > tc. Let us define yi(tc)

as event status for subject i at time tc. We consider tc to be less than the observation

time since we aim to forecast the event occurrence at early stage of the study. Suppose,

among n subjects in the study, only n(tc) will experience the event at time tc. For each

subject i we can define

yi(tc) =


1 if Oi ≤ tc and δi = 1,

0 if Oi ≤ tc and δi = 0,

0 otherwise

In this transformed formulation, given the training data (xi, yi(tc)), we can build a

binary classifier using yi(tc) as the class label. If yi(tc) = 1, then the event has occurred

for subject i and if yi(tc) = 0, then the event has not occurred. It should be noted that

a new classifier will have to be built to estimate the probability of event occurrence at tf

based on the training data that is available at tc.

2.2.2 Survival Analysis

In general, survival analysis is defined as a collection of statistical methods which

contains time of a particular event of interest as the outcome variable to be estimated.

In many survival applications, it is common to see that the observation period of interest

is incomplete for some subjects and such a data is considered to be censored [38]. Con-

sidering the duration to be a continuous random variable T , the survival function, S(t)
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is the probability that the time of event occurrence is later than a certain specified time

t, which is defined as

S(t) = Pr(T > t) =

∫ ∞
t

f(u) du = 1− F (t) (2.1)

where f(t) is a probability density function and F (t) is a cumulative distribution function.

Survival analysis involves the modelling of time-to-event data. We will use one of the

popular parametric methods in survival analysis, accelerated failure time (AFT) [47]

model, to adapt the probability of event using different time-to-event distributions.

2.2.3 Naive Bayes Classifier

Naive Bayes is a well-known probabilistic model in machine learning domain. Assume

we have a training set in Figure 1.1 where the event occurrence information is available

up to time tc. Using binary classification transformation explained above, based on Naive

Bayes algorithm the event probability can be estimated as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=
P
(
y(tc) = 1, t ≤ tc

)∏m
j=1 P

(
xj | y(tc) = 1

)
P (x, t ≤ tc)

(2.2)

The first component of the numerator is the prior probability of the event occurrence

at time tc. The second component is a conditional probability distribution and can be

estimated as

P
(
xj | y(tc) = 1

)
=

∑n
i=1

(
yi(tc) = 1, xij = xj

)∑n
i=1(yi(tc) = 1)

(2.3)

Thus, it is a natural estimate for the likelihood function in Naive Bayes to count the

number of times that event occurred at time tc in conjunction with jth attributes that

takes a value of xj. Then we count the number of times the event occurred at time tc

in total and finally take the ratio of these two terms. This formula is valid for discrete

attributes; However, it can be easily adapted for continues variables as well [24].
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Figure 2.1: An illustration of the basic structure of (a) Naive Bayes(b) TAN and (c)
Bayesian Network classifier.

2.2.4 Tree-Augmented Naive Bayes Classifier

One extension of Naive Bayes is the Tree-Augmented Naive Bayes (TAN) where the

independence assumption between the attributes is relaxed [16]. The TAN algorithm

imposes a tree structure on the Naive Bayes model by restricting the interaction among

the variables to a single level. This method allows every attribute xi to depend upon

the class and at most one other attribute, xp(i), called the parent of xi. Illustration

of the basic structure of the dependency in Naive Bayes and TAN is shown in Figure

2.1. Given the training set (xi, yi(tc)), firstly the tree for the TAN model should be

constructed based on the conditional mutual information between two attributes [16].

I
(
xi,xj | y(tc)

)
=

∑
xi,xj ,y(tc)

P
(
xi, xj, y(tc)

) P
(
xi, xj | y(tc)

)
P
(
xi | y(tc)

)
P
(
xj | y(tc)

) (2.4)

Then, a complete undirected graph in which the vertices correspond to the attributes

xi is constructed. Using Equation (2.4), the weight of all the edges can be computed.

A maximum weighted spanning tree is built and finally undirected tree is transformed

into a directed one by randomly choosing a root variable and setting the direction of

all the edges outward from the root. After the construction of the tree, the conditional

probability of each attribute on its parent and the class label is calculated and stored.

Hence, the probability of event at time tc, can be defined as follows:
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P
(
y(tc) = 1 | x, t ≤ tc

)
=
P
(
y(tc) = 1, t ≤ tc

)∏m
j=1 P

(
xj | y(tc) = 1, xp(j)

)
P (x, t ≤ tc)

(2.5)

The numerator consists of two components; the prior probability of the event occurrence

at time tc and the conditional probability distributions which can be estimated using

maximum likelihood estimation (MLE).

2.2.5 Bayesian Networks Classifier

A Bayesian network is a graphical representation of a probability distribution over a

set of variables. It can be consider as an extension for TAN model where features can be

related to each other in different levels (Figure 2.1). It consists of two parts [19]:

1) a directed network structure in the form of a directed acyclic graph (DAG) which

can be shown as G = (V,E), where V denotes the set of vertices which represent

variables, while E is the set of edges which show the dependence between the

variables;

2) a set of the local probability distributions, one for each node variable, conditional

on each value combination of its parents.

Thus, a Bayesian network can be formally defined as BN =
(
G,P (G|D)

)
where

P (G|D) = L
(
D|G,P (G|D)

)
is the networks likelihood on given data D. The Bayesian

network structure in this thesis is learnt by the well-known search-and-score based Hill-

climbing algorithm [20]. The weight-adapted MDL scoring (Eq. (2.6)) function is used

as the criterion function to be minimised for the Hill-climbing algorithm [30].

MDL(BN,D) =
d

2
log(N)− logL

(
D|G,P (G|D)

)
(2.6)
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where d is the number of free parameters of a multinomial local conditional probability

distribution table. The second component of a Bayesian Network is a set of local condi-

tional probability distributions. Together with the graph structure, these distributions

are sufficient to represent the joint probability distribution of the domain. Joint proba-

bility is defined as the probability that a series of events will happen concurrently and

hence it can be calculated from the product of individual probabilities of the nodes:

P (x1, . . . ,xm) =
m∏
j=1

P (xj | Pa(xj)) (2.7)

where Pa(xj) is the set of parents of xj. Hence, given a training set, the goal of the

Bayesian Network is to find the best graph structure to correctly predict the label for y

given a vector of m attributes x = (x1,x2, ...,xm). It can be formulated as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=
P
(
y(tc) = 1, t ≤ tc

)∏m
j=1 P

(
xj | y(tc) = 1, Pa(xj)

)
P (x, t ≤ tc)

(2.8)

In Eq. (2.8), the first element in numeraor is the prior probability of the class and the

second element is the joint probability of the attributes based on the graph structure . A

Bayesian Network is a generative classifier with a full probabilistic model of all variables

which enable us to adapt the prior probability of event for different time points (beyond

the observation time) during the forecasting.

2.3 Handling Censored Data

Two naive approaches to handle censored data are: (1) completely exclude them from

the analysis which will result in losing important information (2) treat censored time as

an actual event time which will induce a bias in the estimation of event time. Instead of

following these approaches, our work handles censored data by dividing them into two

groups [51]: event and event-free. For each censored instance, we estimate the probability

of event and probability of censoring using Kaplan-Meier estimator and give a new class
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label based on these probability values. This approach assumes that the censoring time is

independent of the event time and all the attributes X. This assumption is valid in many

applications since many of the subjects are censored towards the end of the study. Let

S(t) be the probability that the event of interest has not occurred within the duration t.

Using Kaplan-Meier estimator [27], the survival distribution is given by

Ŝ(t) =
∏

i:t(i)<t

(
1− di

ni

)
(2.9)

where di represents the number of events at time t(i) (time after ascending reordering),

and ni indicates the number of subjects who still remain in the study at time t(i). Thus,

using Eq. (2.1) the probability of event can be estimated as F̂e(t) = 1 − Ŝ(t). On the

other hand, the probability that censoring has not occurred within duration t can be

defined as G(t) = P (C > t) where C is censoring time, by setting “event” indicator

δ∗i = 1− δi [26]. Thus, Kaplan-Meier estimator for G(t) is

Ĝ(t) =
∏

i:t(i)<t

(
1− d∗i

ni

)
(2.10)

where d∗i is the number of subjects who were censored at time t(i), and ni is the number

of subjects at risk of censoring at time t(i). Let F̂c(t) be the probability of censoring,

then it can be estimated as F̂c(t) = 1 − Ĝ(t). We define a new label for censored data

using Eq. (2.9) and (2.10). For each instance, if F̂e(t) > F̂c(t), then it is labeled as event;

otherwise, it will be labeled as event-free which indicates that even if there is complete

followup information of that subject, there is extremely low chance of experiencing an

event until the end of study (maybe even after that). Unlike other methods that handle

censored data, this approach can simply solve the uncertainty with such censored data

by labelling them as event or event-free based on the consistent Kaplan-Meier estimator.

Even after the labeling is done, the problem of forecasting, explained in the next section,



17

is a challenging task.

2.4 Early Stage Event Prediction (ESP) Framework

In this section, we describe the proposed Early Stage Prediction (ESP) framework.

First, we describe our proposed prior probability extrapolation method on different dis-

tributions and then we will introduce ESP-NB, ESP-TAN and ESP-BN algorithms which

utilize the extrapolation method.

2.4.1 Prior Probability Extrapolation

In order to predict event occurrence in longitudinal data, we develop a technique

that can estimate the ratio of event occurrence beyond the original observation range

or in other words, compute the extrapolation for prior probability of event occurrence.

For this purpose, we develop the time to event estimation using the accelerated failure

time model (AFT). We consider two well-known distributions, Weibull and Log-logistic,

which are used widely in literature to model time-to-event [6] and the parameters of these

distributions are learned from the information available until tc. We will integrate such

extrapolated values later with the proposed learning algorithms in order to make future

predictions.

Weibull: When time-to-event follows Weibull distribution, the cumulative probability

distribution F (tc) with shape a and scale b can be estimated as

F̂ (tc) = 1− e−(tc/b)
a

(2.11)

It should be noted that when the shape parameter of Weibull distribution is equal

to 1, it transfers to the exponential distribution.

Log-logistic: when Ti follows log-logistic distribution with shape parameter a and scale
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parameter b, the prior probability distribution F (tc) can be estimated as

F̂ (tc) =
1

1 + (tc/b)−a
(2.12)

Having the cumulative probability distribution of event, F (tc) at tc, it can be easily

extrapolated for any time t.

2.4.2 The ESP Algorithm

We will now describe the ESP Algorithm which consists of two phases. In the first

phase, the conditional probability distribution is estimated using training data which is

obtained until time tc (see sections 2.2.3, 2.2.4 and 2.2.5). We assume that the joint

probability estimation from the Bayesian methods does not change over time. This is

a valid assumption in survival data when that covariates do not depend on the time as

the relation between feature at time tcwill still be the same through end of study [23].

On the other hand as time passes, the prior probability for event occurrence needs to be

updated. In the second phase, we extrapolate the prior probability of event occurrence

for time tf which is beyond the observed time using different extrapolation techniques as

follows:

ESP Naive Bayes (ESP-NB)

For Naive Bayes method using Eq. (2.2) and extrapolation method explained in previous

section, the ESP-NB can be writen as

P
(
y(tf ) = 1 | x, t ≤ tf

)
=
F (tf )

∏m
i=1 P

(
xi | y(tc) = 1

)
P (x, t ≤ tf )

(2.13)
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ESP Tree-Augmented Naive Bayes (ESP-TAN)

Probability of event occurrence based on TAN method for time tf using Eq. (2.5) can

be estimated as

P
(
y(tf ) = 1 | x, t ≤ tf

)
=
F (tf )

∏m
j=1 P

(
xj | y(tc) = 1, xp(j)

)
P (x, t ≤ tf )

(2.14)

Algorithm 1: Early Stage Prediction (ESP) Framework

Require: Training data Dn(tc) =
(
x, y(tc), T

)
, tf

Output: Probability of event at time tf
Phase 1: Conditional probability estimation at tc
1: for j = 1, ...,m

2: find P
(
xj | y(tc) = 1

)
3: end

Phase 2: Predict probability of event occurrence at tf
4: fit AFT model to Dn(tc)

5: P
(
y(tf ) = 1, t ≤ tf

)
= F (t)

6: for i = 1, ..., n

7: estimate P
(
yi(tf ) = 1 | xi, t ≤ tf

)
8: end

9: return P
(
y(tf ) = 1 | x, t ≤ tf

)
Algorithm 1 outlines the proposed ESP framework. In the first phase (lines 1-3), for

each attribute j, the algorithm estimates conditional probability using the data available

at time tc. In the second phase, a probabilistic model is built to predict the event

occurrence at tf . In lines 4 and 5, the prior probability for event occurrence at time tf is

estimated using different extrapolation techniques. Then, in lines 6-9, for each subject i,

we adapt the posterior probability of event occurrence at time tf .

ESP Bayesian Network (ESP-BN)

For Bayesian Network, first we need to build a network using the information until tc.

We will train a Bayesian network classifier using Hill-climbing structure learning method.
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Once we learn the structure of the Bayesian network, the subsequent step is to forecast

the probability of event occurrence at the end of the study tf . For this purpose we can use

different extrapolation techniques as described in previous sections. Thus, the posterior

probability estimation for event occurrence at time tf can be defined as,

P
(
y(tc) = 1 | x, t ≤ tf

)
=
F (tf )

∏m
j=1 P

(
xj | y(tc) = 1, Pa(xj)

)
P (x, t ≤ tf )

(2.15)

Algorithm 2: ESP-BN Algorithm:

Require: Training data Dn(tc), End of study time t.

Output: Probability of event at time tf
Phase 1: learn Bayesian Network structure at tc
1: EG ← ∅, estimate P

(
G|Dn(tc)

)
2: scorefinal ←∞ , score = MDL

(
BN,Dn(tc)

)
(Eq. (2.6))

3: while scorefinal > score

4: scorefinal ← score

5: for every add/remove/reverse EG on G

6: estimate P
(
Gnew|Dn(tc)

)
7: scorenew = MDL

(
BNnew, Dn(tc)

)
8: select network structure with minimum scorenew
9: if score > scorenew
10: score← scorenew , G← Gnew

Phase 2: Forecasting event occurrence at tf
11: fit AFT model to Dn(tc)

12: P
(
y(tf ) = 1, t ≤ tf

)
= F (t)

13: for all i in Dn(t)

14: estimate P (δi(t)|Xi)

15: Weibull using Eqs. (2.8), (2.11) and (2.15)

16: Log-logistic using Eqs. (2.8), (2.12) and (2.15)

17: return P
(
y(tf ) = 1 | x, t ≤ tf

)
Algorithm 2 outlines the proposed ESP-BN model. Lines 1-10 describe the first stage

where a Bayesian network structure is learnt using Hill-climbing method for training data

until tc. After the initial set up to build a network (lines 1-2), the Hill-climbing algorithm

will find a network with the minimum MDL based on the score given in Eq. (2.6). In
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the second phase, a probabilistic model is built to forecast event occurrence at t. In line

11, the AFT model is built on Dn(tc) using various distributions. Then, in lines 13-17,

we adapt the posterior probability of event occurrence at time t. This phase has the

time complexity of O(n). The time complexity of the ESP algorithm follows the time

complexity of learning method that is chosen. It should be noted that the complexity

of the extrapolation component is a constant and does not depend on either m or n.

Hence, for ESP-NB it is O(mn) , for ESP-TAN it is O(m2n), where n is total number of

subjects and m is the number of features in dataset and for ESP-BN O(mkn), where k

is maximum number of parents (in our study we test different values of k to get the best

performance which is in the range of 2 to 5) [45].
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CHAPTER 3

EXPERIMENTAL RESULTS

In this chapter, we will implement our proposed ESP method on extensive dataset and

and provide comparisons with various baseline prediction methods. First we explain

real-world datasets as well as synthetic data that have been used in this thesis. We also

discuss evaluation method that have been used to check the performance of the proposed

method. Finally the experimental result will be provided and practical implications of

the ESP framework in survival studies will be discussed.

3.1 Dataset Description

We evaluated the performance of the models using both synthetic and real-world

benchmark survival datasets which are summarized in Table 3.1.

Synthetic Datasets: We generated synthetic dataset in which the feature vectors

~x are generated based on a normal distribution N(0, 1). Covariate coefficient vector β is

generated based on a uniform distribution Unif(0, 1). Thus, T can be generated using

the method described in [3]. Given the observed covariates ~xi for observation i, the failure

time can be generated by

Ti = −
(
log(Unif(0, 1))

λexp(β ′~xi)

)ν
(3.1)

In our experiments, we set λ = 0.01, ν = 2.

Real-world Survival Datasets: There are several real-world survival benchmark

datasets that we used in our experiments. Primary biliary cirrhosis (PBC), breast and

colon cancer which are widely used in evaluating longitudinal studies are available in

the survival data repository 1. We also used Framingham heart study dataset which is

publicly available [12].

In addition, we also used two proprietary datasets. One is the electronic health record

1http://cran.rproject.org/web/packages/survival/
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Table 3.1: Number of features, instances and events, T50 and T100 corresponds to the
time taken for the occurrence of 50% and 100% of the events, respectively and C50 shows
the number of censoring before T50.

Dataset #Features #Instances #Events nnC 50nn nnT 50nn nnT 100nn

Syn1 5 100 50 5 1014 3808

Syn2 20 1000 602 87 943 7723

Breast 8 673 298 37 646 2659

Colon 13 888 445 8 394 3329

PBC 17 276 110 15 1191 4456

Framingham 16 5209 1990 0 1991 5029

EHR 77 4417 3479 0 50 4172

Kickstarter 54 4175 1961 162 21 60

(EHR)data from heart failure patients collected at the Henry Ford Health System in

Detroit, Michigan. This data contains patient’s clinical information such as procedures,

medications, lab results and demographics and the goal here is to predict the number of

days for the next readmission after the patient is discharged from the hospital. Another

dataset was obtained from Kickstarter 2, a popular crowdfunding platform. Each project

has been tracked for a specific period of time. If the project reaches the desired funding

goal within deadline date then it is considered to be a success (or event occurred). On

the other hand, the project is considered to be censored if it fails to reach its goal within

the deadline date.

3.2 Performance Evaluation

The performance of the proposed models is measured using following metrics,

• Accuracy is expressed in the percentage of subjects in the test set that were

classified correctly.

2www.kickspy.com
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• F-measure is defined as a harmonic mean of precision and recall. A high value of

F -measure indicates that both precision and recall are reasonably high.

F −measure =
2× Precision×Recall
Recall + Precision

• AUC is the area under the receiver operating characteristic (ROC); the curve is

generated by plotting the true positive rate (TPR) against the false positive rate

(FPR) by varying the threshold value.

In terms of our implementation, the joint probability for Naive Bayes and TAN is

learnt using e1071 package available in the R programming language [13]. Bayesian

network structure for the proposed ESP-BN method is learned using a Hill-climbing

algorithm that is available in open source Weka software [48], while the proposed model

is implemented using the R programming language. The coxph function and survreg

in the survival package are employed to train the Cox and AFT models, respectively.

The Breslow’s method was used to handle tied observations and the censored handling

methods are also implemented in R using the survival package.

3.3 Results and Discussion

Tables 3.2, 3.3 and 3.4 provide the performance of different extrapolation methods

using AUC, Accuracy and F-measure evaluation metrics. Models are trained at time

when only 50% of events have occurred and the event forecasting is done at the end

of study. For evaluation, we used stratified 10-fold cross-validation and average values

(along with the standard deviations) of the results on all 10-folds. The result shows

that Weibull distribution gives a better performance compare to log-logistic in most

of survival data. This align with the time-to-event characteristic in survival data that

fit perfectly with Weibull distribution. The choice of the particular distribution will

depend on the nature of the dataset being considered, particularly the distribution that
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the event occurrence follows. However, our results indicate that for almost all of the

datasets, Weibull distribution will provide much better results.

Table 3.2: Comparison of AUC different extrapolation methods used in ESP-NB, ESP-
TAN and ESP-BN (with standard deviation values).

ESP-NB ESP-TAN ESP-BN

Dataset Weibull Log-Logistic Weibull Log-Logistic Weibull Log-Logistic

Syn1
0.865 0.841 0.869 0.849 0.867 0.843

(0.004) (0.003) (0.001) (0.001) (0.002) (0.002)

Syn2
0.823 0.812 0.825 0.821 0.833 0.822

(0.002) (0.003) (0.003) (0.002) (0.001) (0.002)

Breast
0.669 0.643 0.678 0.653 0.673 0.649

(0.001) (0.003) (0.007) (0.005) (0.001) (0.003)

Colon
0.639 0.622 0.642 0.631 0.659 0.644

(0.013) (0.014) (0.009) (0.011) (0.009) (0.01)

PBC
0.767 0.744 0.772 0.758 0.786 0.775

(0.001) (0.004) (0.003) (0.001) (0.003) (0.001)

Framingham
0.954 0.971 0.969 0.973 0.964 0.979

(0.007) (0.003) (0.004) (0.002) (0.003) (0.001)

EHR
0.656 0.628 0.657 0.63 0.667 0.664

(0.018) (0.021) (0.011) (0.026) (0.012) (0.018)

Kickstarter
0.822 0.829 0.827 0.833 0.845 0.847

(0.024) (0.023) (0.019) (0.018) (0.023) (0.021)

For performance benchmarking, we compare the proposed ESP-NB, ESP-TAN and

ESP-BN algorithms using the best distributions from previous tables as extrapolation

techniques with Cox, Logistic Regression (LR), Random Forest (RF), Naive Bayes (NB),

Tree-Augmented Naive Bayes (TAN) and Bayesian Network (BN)classification methods

which trained at time when only 50% of events have occurred and the event prediction

is done at the end of study. Tables 3.5, 3.6 and 3.7 summarize the comparison result for

AUC, Accuracy and F-measure evaluation metrics. For all of the datasets, our results

evidently show that the proposed ESP-based methods will provide significantly better

prediction results compared to other methods.

The results show that by incorporating the time-to-event extrapolation method within

the ESP framework, we are able to adapt the prior probability in Bayesian methods com-
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Table 3.3: Comparison of Accuracy for different extrapolation methods used in ESP-NB,
ESP-TAN and ESP-BN (with standard deviation values).

ESP-NB ESP-TAN ESP-BN

Dataset Weibull Log-Logistic Weibull Log-Logistic Weibull Log-Logistic

Syn1
0.779 0.771 0.792 0.782 0.787 0.785

(0.023) (0.017) (0.02) (0.024) (0.019) (0.021)

Syn2
0.777 0.771 0.785 0.779 0.789 0.782

(0.023) (0.029) (0.025) (0.027) (0.021) (0.023)

Breast
0.738 0.725 0.805 0.738 0.754 0.791

(0.027) (0.022) (0.022) (0.027) (0.019) (0.015)

Colon
0.615 0.611 0.619 0.614 0.622 0.617

(0.155) (0.141) (0.148) (0.165) (0.12) (0.145)

PBC
0.719 0.705 0.731 0.714 0.748 0.732

(0.116) (0.119) (0.118) (0.114) (0.11) (0.101)

Framingham
0.827 0.859 0.853 0.865 0.879 0.892

(0.093) (0.103) (0.089) (0.096) (0.106) (0.096)

EHR
0.771 0.745 0.785 0.764 0.815 0.789

(0.126) (0.119) (0.156) (0.123) (0.112) (0.116)

Kickstarter
0.739 0.756 0.745 0.769 0.767 0.785

(0.043) (0.059) (0.048) (0.042) (0.048) (0.052)

Table 3.4: Comparison of F-measure for different extrapolation methods used in ESP-NB,
ESP-TAN and ESP-BN (with standard deviation values).

ESP-NB ESP-TAN ESP-BN

Dataset Weibull Log-Logistic Weibull Log-Logistic Weibull Log-Logistic

Syn1
0.776 0.778 0.789 0.783 0.785 0.783

(0.022) (0.022) (0.019) (0.023) (0.017) (0.02)

Syn2
0.774 0.769 0.779 0.769 0.783 0.776

(0.023) (0.029) (0.02) (0.021) (0.026) (0.021)

Breast
0.749 0.721 0.796 0.748 0.761 0.743

(0.036) (0.042) (0.032) (0.039) (0.042) (0.038)

Colon
0.621 0.611 0.626 0.617 0.629 0.622

(0.145) (0.151) (0.148) (0.15) (0.18) (0.15)

PBC
0.712 0.687 0.715 0.698 0.725 0.721

(0.11) (0.109) (0.099) (0.114) (0.098) (0.11)

Framingham
0.875 0.883 0.894 0.908 0.902 0.925

(0.073) (0.083) (0.059) (0.066) (0.076) (0.066)

EHR
0.787 0.765 0.798 0.804 0.826 0.811

(0.126) (0.206) (0.16) (0.14) (0.16) (0.12)

Kickstarter
0.753 0.758 0.765 0.779 0.782 0.797

(0.037) (0.053) (0.048) (0.032) (0.058) (0.042)
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Table 3.5: Comparison of AUC values for Cox, LR, RF, NB, TAN and BN with proposed
ESP-NB, ESP-TAN and ESP-BN methods using best method of extrapolation methods
(with standard deviation values).

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1
0.717 0.725 0.712 0.715 0.722 0.718 0.865 0.869 0.867

(0.004) (0.005) (0.006) (0.007) (0.002) (0.005) (0.004) (0.001) (0.002)

Syn2
0.71 0.729 0.714 0.713 0.718 0.721 0.823 0.825 0.833

(0.004) (0.004) (0.002) (0.007) (0.005) (0.006) (0.002) (0.003) (0.001)

Breast
0.619 0.658 0.647 0.629 0.662 0.635 0.669 0.678 0.673

(0.01) (0.007) (0.004) (0.009) (0.004) (0.002) (0.001) (0.007) (0.001)

Colon
0.61 0.618 0.621 0.627 0.629 0.633 0.639 0.642 0.659

(0.024) (0.011) (0.014) (0.011) (0.014) (0.01) (0.013) (0.009) (0.009)

PBC
0.698 0.665 0.72 0.687 0.693 0.731 0.767 0.772 0.786

(0.009) (0.005) (0.003) (0.003) (0.01) (0.004) (0.001) (0.003) (0.003)

Framingham
0.879 0.935 0.929 0.957 0.963 0.969 0.971 0.973 0.979

(0.007) (0.002) (0.005) (0.002) (0.005) (0.004) (0.007) (0.004) (0.001)

EHR
0.616 0.637 0.65 0.642 0.645 0.651 0.656 0.657 0.667

(0.023) (0.017) (0.025) (0.019) (0.025) (0.026) (0.018) (0.011) (0.012)

Kickstarter
0.823 0.842 0.845 0.815 0.819 0.844 0.822 0.827 0.847

(0.019) (0.019) (0.027) (0.022) (0.025) (0.023) (0.024) (0.019) (0.021)

Table 3.6: Comparison of Accuracy values for Cox, LR, RF, NB, TAN and BN with
proposed ESP-NB, ESP-TAN and ESP-BN methods using best method of extrapolation
methods (with standard deviation values).

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1
0.658 0.649 0.675 0.642 0.681 0.673 0.779 0.792 0.787

(0.022) (0.024) (0.019 (0.018) (0.021) (0.022) (0.023) (0.02) (0.019)

Syn2
0.657 0.609 0.669 0.665 0.673 0.677 0.777 0.785 0.789

(0.021) (0.026) (0.025) (0.027) (0.029) (0.024) (0.023) (0.025) (0.021)

Breast
0.632 0.557 0.622 0.613 0.657 0.628 0.738 0.805 0.754

(0.017) (0.013) (0.016) (0.023) (0.014) (0.021) (0.027) (0.022) (0.019)

Colon
0.49 0.487 0.562 0.526 0.531 0.552 0.615 0.619 0.622

(0.133) (0.167) (0.18) (0.159) (0.174) (0.15) (0.155) (0.148) (0.12)

PBC
0.657 0.578 0.658 0.599 0.638 0.633 0.719 0.731 0.748

(0.111) (0.123) (0.132) (0.125) (0.115) (0.119) (0.116) (0.118) (0.11)

Framingham
0.745 0.77 0.732 0.761 0.782 0.804 0.827 0.853 0.892

(0.085) (0.093) (0.085) (0.099) (0.107) (0.087) (0.093) (0.089) (0.096)

EHR
0.651 0.586 0.619 0.642 0.659 0.691 0.771 0.785 0.815

(0.121) (0.132) (0.173) (0.156) (0.182) (0.191) (0.126) (0.156) (0.112)

Kickstarter
0.656 0.698 0.709 0.691 0.736 0.746 0.739 0.745 0.785

(0.049) (0.039) (0.052) (0.068) (0.051) (0.046) (0.043) (0.048) (0.052)
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Table 3.7: Comparison of F-measure values for Cox, LR, RF, NB, TAN and BN with
proposed ESP-NB, ESP-TAN and ESP-BN methods using best method of extrapolation
methods (with standard deviation values).

Dataset Cox LR RF NB TAN BN ESP-NB ESP-TAN ESP-BN

Syn1
0.651 0.645 0.667 0.762 0.778 0.773 0.776 0.789 0.785

(0.021) (0.025) (0.022) (0.021) (0.023) (0.021) (0.022) (0.019) (0.017)

Syn2
0.647 0.599 0.659 0.655 0.663 0.671 0.774 0.779 0.783

(0.023) (0.025) (0.027) (0.029) (0.024) (0.023) (0.023) (0.02) (0.026)

Breast
0.648 0.573 0.642 0.623 0.672 0.638 0.749 0.796 0.761

(0.035) (0.063) (0.033) (0.053) (0.034) (0.031) (0.036) (0.032) (0.042)

Colon
0.512 0.487 0.578 0.543 0.549 0.562 0.621 0.626 0.629

(0.161) (0.17) (0.194) (0.169) (0.184) (0.19) (0.145) (0.148) (0.18)

PBC
0.61 0.529 0.613 0.541 0.562 0.575 0.712 0.715 0.725

(0.141) (0.13) (0.12) (0.121) (0.15) (0.14) (0.11) (0.099) (0.098)

Framingham
0.769 0.735 0.792 0.794 0.809 0.845 0.875 0.894 0.925

(0.078) (0.093) (0.085) (0.075) (0.073) (0.083) (0.073) (0.059) (0.066)

EHR
0.681 0.584 0.617 0.684 0.708 0.715 0.787 0.798 0.826

(0.11) (0.166) (0.188) (0.156) (0.198) (0.21) (0.126) (0.16) (0.16)

Kickstarter
0.689 0.711 0.737 0.721 0.726 0.743 0.753 0.765 0.797

(0.084) (0.048) (0.067) (0.058) (0.061) (0.054) (0.037) (0.048) (0.042)

putations. Thus, it clearly indicates that the ESP-based method outperforms the other

methods in building an accurate forecasting model. Furthermore, ESP-NB build on in-

dependence assumption between attributes which does not hold in many clinical survival

applications. Thus, the introduced ESP-TAN and ESP-BN weakened this assumption

which leads to increase in AUC, accuracy and F-measure in almost all of results. Also

in almost all the cases ESP-BN gives the better results. This is due to the fact that

Bayesian netwrok can model more complex data specially when we have more features

compare to TAN however it has higher time complexity [8].

Comparing the result in Table 3.5 with Tables 3.6 or 3.7 one can conclude that

improvement in the accuracy and F-measure is more significant than improvement in

AUC. The reason is that the area under the curve (AUC) is equal to the probability that

a classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative example. It measures the classifiers skill in ranking a set of patterns according

to the degree to which they belong to the positive class, but without actually assigning
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patterns to classes. In our method we adapt the prior probability using time-to-event

information. This update the probability of event for all subjects in the study with

some rate. Thus, the overall ranking for probability of event occurrence after using ESP

framework will change slightly compared to baseline classifiers. On the other hand, the

overall accuracy also depends on the ability of the classifier to rank patterns, but also

on its ability to select a threshold in the ranking used to assign patterns to the positive

and negative class. Using the same threshold, ESP method result in better confusion

matrix which cause both accuracy and F-measure change significantly compare to other

methods that do not have the ability to extrapolate event occurrence.

This result supports our claim that probabilistic models can provide an accurate

forecasting of event occurrences beyond the observation time. From our experiments, we

can conclude that our model can obtain practically useful results at the initial phases of

a longitudinal study and can provide good insights about the event occurrence by the

end of the study. The proposed prediction model is an extremely useful tool for domains

where one has to wait for a significant period of time to collect sufficient amount of

training data.

In Figures 3.1, 3.2 and 3.3, we present the prediction performance of different methods

by varying the percentage of event occurrence information that is available to train the

model for all real-world datasets. For example, 20% on the x-axis corresponds to the

training data obtained when only 20% of events have occurred and prediction of the

event occurrences was made for the end of study period. From this plot we can see

that the evaluation metric values improve when there is more information on the event

occurrence in the training data. For all the cases, our proposed ESP-based method

gives the better prediction performance compared to other techniques. This behaviour

is similar across all the benchmark datasets. Furthermore, it should be noted that the

improvements of the proposed methods are more significant over the baseline methods
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Figure 3.1: AUC values of different methods obtained by varying the percentage of event
occurrence information.
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Figure 3.2: Accuracy values of different methods obtained by varying the percentage of
event occurrence information for the pbc dataset.
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Figure 3.3: F-measure values of different methods obtained by varying the percentage of
event occurrence information for the pbc dataset.
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when there is only a limited amount (20% or 40%) of training data. Also, when 100% of

the training data is available, the performance of the proposed methods will converge to

that of the Bayesian Network method since the prior probabilities in both scenarios will

be the same and fitting a distribution will not have any impact when evaluated at the

end of the study.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

In many real-world application domains, it is important to be able to forecast the oc-

currence of future events by only using the data collected at early stages of longitudinal

studies. In this thesis, we developed an early stage event prediction framework by ex-

tending Bayesian methods through fitting a statistical distribution to time-to-event data

with fewer available events at the early stages. Instead of excluding the censored data,

we develop a new mechanism to handle censored data by estimating the probability of

event and the probability of censoring using Kaplan-Meier estimator. One of the main

objectives of this paper is to demonstrate that more accurate predictions can be made

when the prior probability at end of study time is appropriately estimated using the cur-

rent information of event occurrence. This is extremely important in such longitudinal

survival studies since accumulating enough training data about the event occurrence is

a time-consuming process.

The proposed ESP-based model adapts prior probability of event occurrence by fitting

time-to-event information using Weibull and Log-logistic distributions. This enables us

to have a reliable prediction of event occurrence for future time points. Our extensive

experiments using both synthetic and real datasets demonstrate that the proposed ESP-

based algorithms are more effective than Cox model or other classification methods in

forecasting events at future time points. Though motivated by biomedical and healthcare

application scenarios (primarily for estimating survival), the proposed algorithms are also

applicable to various other domains where one needs to predict event occurrences at early

stage of analysis when there are only a relatively fewer set of events that have occurred

until a certain time point.
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Predicting event occurrence at an early stage in longitudinal studies is an important

and challenging problem which has high practical value. As opposed to the standard

classification and regression problems where a domain expert can provide the labels for

the data in a reasonably short period of time, training data in such longitudinal studies

must be obtained only by waiting for the occurrence of sufficient number of events. On

the other hand, survival analysis aims at finding the underlying distribution for data that

measure the length of time until the occurrence of an event. However, it cannot give an

answer to the open question of “how to forecast whether a subject will experience event by

end of study having event occurrence information at early stage of survival data?”. This

problem exhibits two major challenges: 1) absence of complete information about event

occurrence (censoring) and 2) availability of only a partial set of events that occurred

during the initial phase of the study. Thus, the main objective of this work is to predict

for which subject in the study event will occur at future based on few event information

at the initial stages of a longitudinal study.

In this thesis, we propose a novel approach to address the first challenge by introducing

a new method for handling censored data using Kaplan-Meier estimator. The second

challenge is tackled by effectively integrating Bayesian methods with an Accelerated

40
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Failure Time (AFT) model by adapting the prior probability of the event occurrence

for future time points. In another word, we propose a novel Early Stage Prediction

(ESP) framework for building event prediction models which are trained at early stages

of longitudinal studies. More specifically, we extended the Naive Bayes, Tree-Augmented

Naive Bayes (TAN) and Bayesian Network methods based on the proposed framework,

and developed three algorithms, namely, ESP-NB, ESP-TAN and ESP-BN, to effectively

predict event occurrence using the training data obtained at early stage of the study.

The proposed framework is evaluated using a wide range of synthetic and real-world

benchmark datasets. Our extensive set of experiments show that the proposed ESP

framework is able to more accurately predict future event occurrences using only a limited

amount of training data compared to the other alternative prediction methods.
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