53,336 research outputs found

    Latent Self-Exciting Point Process Model for Spatial-Temporal Networks

    Full text link
    We propose a latent self-exciting point process model that describes geographically distributed interactions between pairs of entities. In contrast to most existing approaches that assume fully observable interactions, here we consider a scenario where certain interaction events lack information about participants. Instead, this information needs to be inferred from the available observations. We develop an efficient approximate algorithm based on variational expectation-maximization to infer unknown participants in an event given the location and the time of the event. We validate the model on synthetic as well as real-world data, and obtain very promising results on the identity-inference task. We also use our model to predict the timing and participants of future events, and demonstrate that it compares favorably with baseline approaches.Comment: 20 pages, 6 figures (v3); 11 pages, 6 figures (v2); previous version appeared in the 9th Bayesian Modeling Applications Workshop, UAI'1

    Project RISE: Recognizing Industrial Smoke Emissions

    Full text link
    Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for social good.Comment: Technical repor

    Graph Distillation for Action Detection with Privileged Modalities

    Full text link
    We propose a technique that tackles action detection in multimodal videos under a realistic and challenging condition in which only limited training data and partially observed modalities are available. Common methods in transfer learning do not take advantage of the extra modalities potentially available in the source domain. On the other hand, previous work on multimodal learning only focuses on a single domain or task and does not handle the modality discrepancy between training and testing. In this work, we propose a method termed graph distillation that incorporates rich privileged information from a large-scale multimodal dataset in the source domain, and improves the learning in the target domain where training data and modalities are scarce. We evaluate our approach on action classification and detection tasks in multimodal videos, and show that our model outperforms the state-of-the-art by a large margin on the NTU RGB+D and PKU-MMD benchmarks. The code is released at http://alan.vision/eccv18_graph/.Comment: ECCV 201
    • …
    corecore