129,729 research outputs found

    Survey on Evaluation Methods for Dialogue Systems

    Get PDF
    In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class

    Improving Retrieval-Based Question Answering with Deep Inference Models

    Full text link
    Question answering is one of the most important and difficult applications at the border of information retrieval and natural language processing, especially when we talk about complex science questions which require some form of inference to determine the correct answer. In this paper, we present a two-step method that combines information retrieval techniques optimized for question answering with deep learning models for natural language inference in order to tackle the multi-choice question answering in the science domain. For each question-answer pair, we use standard retrieval-based models to find relevant candidate contexts and decompose the main problem into two different sub-problems. First, assign correctness scores for each candidate answer based on the context using retrieval models from Lucene. Second, we use deep learning architectures to compute if a candidate answer can be inferred from some well-chosen context consisting of sentences retrieved from the knowledge base. In the end, all these solvers are combined using a simple neural network to predict the correct answer. This proposed two-step model outperforms the best retrieval-based solver by over 3% in absolute accuracy.Comment: 8 pages, 2 figures, 8 tables, accepted at IJCNN 201

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    Quick and (not so) Dirty: Unsupervised Selection of Justification Sentences for Multi-hop Question Answering

    Full text link
    We propose an unsupervised strategy for the selection of justification sentences for multi-hop question answering (QA) that (a) maximizes the relevance of the selected sentences, (b) minimizes the overlap between the selected facts, and (c) maximizes the coverage of both question and answer. This unsupervised sentence selection method can be coupled with any supervised QA approach. We show that the sentences selected by our method improve the performance of a state-of-the-art supervised QA model on two multi-hop QA datasets: AI2's Reasoning Challenge (ARC) and Multi-Sentence Reading Comprehension (MultiRC). We obtain new state-of-the-art performance on both datasets among approaches that do not use external resources for training the QA system: 56.82% F1 on ARC (41.24% on Challenge and 64.49% on Easy) and 26.1% EM0 on MultiRC. Our justification sentences have higher quality than the justifications selected by a strong information retrieval baseline, e.g., by 5.4% F1 in MultiRC. We also show that our unsupervised selection of justification sentences is more stable across domains than a state-of-the-art supervised sentence selection method.Comment: Published at EMNLP-IJCNLP 2019 as long conference paper. Corrected the name reference for Speer et.al, 201
    • …
    corecore