50 research outputs found

    Incentivizing the Dynamic Workforce: Learning Contracts in the Gig-Economy

    Full text link
    In principal-agent models, a principal offers a contract to an agent to perform a certain task. The agent exerts a level of effort that maximizes her utility. The principal is oblivious to the agent's chosen level of effort, and conditions her wage only on possible outcomes. In this work, we consider a model in which the principal is unaware of the agent's utility and action space. She sequentially offers contracts to identical agents, and observes the resulting outcomes. We present an algorithm for learning the optimal contract under mild assumptions. We bound the number of samples needed for the principal obtain a contract that is within ϵ\epsilon of her optimal net profit for every ϵ>0\epsilon>0

    Contextual Bandits with Cross-learning

    Full text link
    In the classical contextual bandits problem, in each round tt, a learner observes some context cc, chooses some action aa to perform, and receives some reward ra,t(c)r_{a,t}(c). We consider the variant of this problem where in addition to receiving the reward ra,t(c)r_{a,t}(c), the learner also learns the values of ra,t(c′)r_{a,t}(c') for all other contexts c′c'; i.e., the rewards that would have been achieved by performing that action under different contexts. This variant arises in several strategic settings, such as learning how to bid in non-truthful repeated auctions (in this setting the context is the decision maker's private valuation for each auction). We call this problem the contextual bandits problem with cross-learning. The best algorithms for the classical contextual bandits problem achieve O~(CKT)\tilde{O}(\sqrt{CKT}) regret against all stationary policies, where CC is the number of contexts, KK the number of actions, and TT the number of rounds. We demonstrate algorithms for the contextual bandits problem with cross-learning that remove the dependence on CC and achieve regret O(KT)O(\sqrt{KT}) (when contexts are stochastic with known distribution), O~(K1/3T2/3)\tilde{O}(K^{1/3}T^{2/3}) (when contexts are stochastic with unknown distribution), and O~(KT)\tilde{O}(\sqrt{KT}) (when contexts are adversarial but rewards are stochastic).Comment: 48 pages, 5 figure

    Forming Probably Stable Communities with Limited Interactions

    Full text link
    A community needs to be partitioned into disjoint groups; each community member has an underlying preference over the groups that they would want to be a member of. We are interested in finding a stable community structure: one where no subset of members SS wants to deviate from the current structure. We model this setting as a hedonic game, where players are connected by an underlying interaction network, and can only consider joining groups that are connected subgraphs of the underlying graph. We analyze the relation between network structure, and one's capability to infer statistically stable (also known as PAC stable) player partitions from data. We show that when the interaction network is a forest, one can efficiently infer PAC stable coalition structures. Furthermore, when the underlying interaction graph is not a forest, efficient PAC stabilizability is no longer achievable. Thus, our results completely characterize when one can leverage the underlying graph structure in order to compute PAC stable outcomes for hedonic games. Finally, given an unknown underlying interaction network, we show that it is NP-hard to decide whether there exists a forest consistent with data samples from the network.Comment: 11 pages, full version of accepted AAAI-19 pape

    Brief Announcement: Bayesian Auctions with Efficient Queries

    Get PDF
    Generating good revenue is one of the most important problems in Bayesian auction design, and many (approximately) optimal dominant-strategy incentive compatible (DSIC) Bayesian mechanisms have been constructed for various auction settings. However, most existing studies do not consider the complexity for the seller to carry out the mechanism. It is assumed that the seller knows "each single bit" of the distributions and is able to optimize perfectly based on the entire distributions. Unfortunately this is a strong assumption and may not hold in reality: for example, when the value distributions have exponentially large supports or do not have succinct representations. In this work we consider, for the first time, the query complexity of Bayesian mechanisms. We only allow the seller to have limited oracle accesses to the players\u27 value distributions, via quantile queries and value queries. For a large class of auction settings, we prove logarithmic lower-bounds for the query complexity for any DSIC Bayesian mechanism to be of any constant approximation to the optimal revenue. For single-item auctions and multi-item auctions with unit-demand or additive valuation functions, we prove tight upper-bounds via efficient query schemes, without requiring the distributions to be regular or have monotone hazard rate. Thus, in those auction settings the seller needs to access much less than the full distributions in order to achieve approximately optimal revenue
    corecore