29,935 research outputs found

    Learning Relations from Social Tagging Data

    Get PDF
    An interesting research direction is to discover structured knowledge from user generated data. Our work aims to find relations among social tags and organise them into hierarchies so as to better support discovery and search for online users. We cast relation discovery in this context to a binary classification problem in supervised learning. This approach takes as input features of two tags extracted using probabilistic topic modelling, and predicts whether a broader-narrower relation holds between them. Experiments were conducted using two large, real-world datasets, the Bibsonomy dataset which is used to extract tags and their features, and the DBpedia dataset which is used as the ground truth. Three sets of features were designed and extracted based on topic distributions, similarity and probabilistic associations. Evaluation results with respect to the ground truth demonstrate that our method outperforms existing ones based on various features and heuristics. Future studies are suggested to study the Knowledge Base Enrichment from folksonomies and deep neural network approaches to process tagging data

    Learning and Leveraging Structured Knowledge from User-Generated Social Media Data

    Get PDF
    Knowledge has long been a crucial element in Artificial Intelligence (AI), which can be traced back to knowledge-based systems, or expert systems, in the 1960s. Knowledge provides contexts to facilitate machine understanding and improves the explainability and performance of many semantic-based applications. The acquisition of knowledge is, however, a complex step, normally requiring much effort and time from domain experts. In machine learning as one key domain of AI, the learning and leveraging of structured knowledge, such as ontologies and knowledge graphs, have become popular in recent years with the advent of massive user-generated social media data. The main hypothesis in this thesis is therefore that a substantial amount of useful knowledge can be derived from user-generated social media data. A popular, common type of social media data is social tagging data, accumulated from users' tagging in social media platforms. Social tagging data exhibit unstructured characteristics, including noisiness, flatness, sparsity, incompleteness, which prevent their efficient knowledge discovery and usage. The aim of this thesis is thus to learn useful structured knowledge from social media data regarding these unstructured characteristics. Several research questions have then been formulated related to the hypothesis and the research challenges. A knowledge-centred view has been considered throughout this thesis: knowledge bridges the gap between massive user-generated data to semantic-based applications. The study first reviews concepts related to structured knowledge, then focuses on two main parts, learning structured knowledge and leveraging structured knowledge from social tagging data. To learn structured knowledge, a machine learning system is proposed to predict subsumption relations from social tags. The main idea is to learn to predict accurate relations with features, generated with probabilistic topic modelling and founded on a formal set of assumptions on deriving subsumption relations. Tag concept hierarchies can then be organised to enrich existing Knowledge Bases (KBs), such as DBpedia and ACM Computing Classification Systems. The study presents relation-level evaluation, ontology-level evaluation, and the novel, Knowledge Base Enrichment based evaluation, and shows that the proposed approach can generate high quality and meaningful hierarchies to enrich existing KBs. To leverage structured knowledge of tags, the research focuses on the task of automated social annotation and propose a knowledge-enhanced deep learning model. Semantic-based loss regularisation has been proposed to enhance the deep learning model with the similarity and subsumption relations between tags. Besides, a novel, guided attention mechanism, has been proposed to mimic the users' behaviour of reading the title before digesting the content for annotation. The integrated model, Joint Multi-label Attention Network (JMAN), significantly outperformed the state-of-the-art, popular baseline methods, with consistent performance gain of the semantic-based loss regularisers on several deep learning models, on four real-world datasets. With the careful treatment of the unstructured characteristics and with the novel probabilistic and neural network based approaches, useful knowledge can be learned from user-generated social media data and leveraged to support semantic-based applications. This validates the hypothesis of the research and addresses the research questions. Future studies are considered to explore methods to efficiently learn and leverage other various types of structured knowledge and to extend current approaches to other user-generated data

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    Knowledge Base Enrichment by Relation Learning from Social Tagging Data

    Get PDF
    There has been considerable interest in transforming unstructured social tagging data into structured knowledge for semantic-based retrieval and recommendation. Research in this line mostly exploits data co-occurrence and often overlooks the complex and ambiguous meanings of tags. Furthermore, there have been few comprehensive evaluation studies regarding the quality of the discovered knowledge. We propose a supervised learning method to discover subsumption relations from tags. The key to this method is quantifying the probabilistic association among tags to better characterise their relations. We further develop an algorithm to organise tags into hierarchies based on the learned relations. Experiments were conducted using a large, publicly available dataset, Bibsonomy, and three popular, human-engineered or data-driven knowledge bases: DBpedia, Microsoft Concept Graph, and ACM Computing Classification System. We performed a comprehensive evaluation using different strategies: relation-level, ontology-level, and knowledge base enrichment based evaluation. The results clearly show that the proposed method can extract knowledge of better quality than the existing methods against the gold standard knowledge bases. The proposed approach can also enrich knowledge bases with new subsumption relations, having the potential to significantly reduce time and human effort for knowledge base maintenance and ontology evolution
    • …
    corecore