4 research outputs found

    Analysing and using subjective criteria to improve dental care recommendation systems

    Get PDF
    Online reviews and rating sites are shaping industries as the users rely on recommendations given by former consumers and sharing opinions on the web. Dentistry has also been impacted by dental patients' reviews. This paper classifies trust-related information for dental care recommendations onto 4 categories: context, relationship, reputation and subjective criteria. It discusses each category and describes how they help focussing on trust when matching patients and dentists in brief. The paper then focuses on subjective criteria and presents the results of a survey aimed at showing trustrelated information emerged from subjective characteristics. Traits of personalities are used as subjective characteristics of patients and that of dentists are derived from the online patients' reviews. 580 Australian patients were surveyed to determine what factors affect their decision to find the trusted dentist. Subjective characteristics of dentists such as dentists' qualities and experienced dentists are considered the most important factors after location and cost. The most preferred dentists' qualities by almost all types of personalities are experienced, professional and quality of service. When the patients are further classified based on levels of fear, their preferences for dentists' qualities changed. Subjective qualities of both patients and dentists are important factors to improve the matching capability for the dental care recommendation systems

    Tackling the supervised label ranking problem by bagging weak learners

    Get PDF
    Preference learning is the branch of machine learning in charge of inducing preference models from data. In this paper we focus on the task known as label ranking problem, whose goal is to predict a ranking among the different labels the class variable can take. Our contribution is twofold: (i) taking as basis the tree-based algorithm LRT described in [1], we design weaker tree-based models which can be learnt more efficiently; and (ii) we show that bagging these weak learners improves not only the LRT algorithm, but also the state-of the-art one (IBLR [1]). Furthermore, the bagging algorithm which takes the weak LRT-based models as base classifiers is competitive in time with respect to LRT and IBLR methods. To check the good ness of our proposal, we conduct a broad experimental study over the standard benchmark used in the label ranking problem literature

    The use of machine learning algorithms in recommender systems: A systematic review

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.eswa.2017.12.020 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Recommender systems use algorithms to provide users with product or service recommendations. Recently, these systems have been using machine learning algorithms from the field of artificial intelligence. However, choosing a suitable machine learning algorithm for a recommender system is difficult because of the number of algorithms described in the literature. Researchers and practitioners developing recommender systems are left with little information about the current approaches in algorithm usage. Moreover, the development of recommender systems using machine learning algorithms often faces problems and raises questions that must be resolved. This paper presents a systematic review of the literature that analyzes the use of machine learning algorithms in recommender systems and identifies new research opportunities. The goals of this study are to (i) identify trends in the use or research of machine learning algorithms in recommender systems; (ii) identify open questions in the use or research of machine learning algorithms; and (iii) assist new researchers to position new research activity in this domain appropriately. The results of this study identify existing classes of recommender systems, characterize adopted machine learning approaches, discuss the use of big data technologies, identify types of machine learning algorithms and their application domains, and analyzes both main and alternative performance metrics.Natural Sciences and Engineering Research Council of Canada (NSERC) Ontario Research Fund of the Ontario Ministry of Research, Innovation, and Scienc
    corecore