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Abstract

Preference learning is the branch of machine learning in charge
of inducing preference models from data. In this paper we focus on
the task known as label ranking problem, whose goal is to predict a
ranking among the different labels the class variable can take. Our
contribution is twofold: (i) taking as basis the tree-based algorithm
LRT described in [1], we design weaker tree-based models which can
be learnt more efficiently; and (ii) we show that bagging these weak
learners improves not only the LRT algorithm, but also the state-of-
the-art one (IBLR [1]). Furthermore, the bagging algorithm which
takes the weak LRT-based models as base classifiers is competitive in
time with respect to LRT and IBLR methods. To check the good-
ness of our proposal, we conduct a broad experimental study over the
standard benchmark used in the label ranking problem literature.
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1 Introduction

Preferences are comparative judgments about a set of alternatives, choices or
options. The goal of preference (choice) modeling is to study individual or
collective decision processes and procedures from a set of previously stated
preferences. Preference Learning [2] has arisen as a new branch of machine
learning, with the goal of inducing preference models from data which contain
information on the past preferences of some individuals. Once the model is
learnt, it can be used to predict preferences in future scenarios.

Although a big deal of the research on preference learning has been related
to recommender systems [3] or to the learning to rank problem [4], in the
last years there has been a growing interest in studying rank data from
a data mining perspective [5]. In this paper we follow this direction. In
particular, we focus on a task known as label ranking problem [1], whose
goal is to predict a ranking among a set of labels given the value of the
predictive attributes. As an example, suppose that we want to recommend to
a forthcoming student a ranked list of the degrees which can be studied in our
University. For instance, we could recommend maths > computer science >
biology > medicine to one student with good skills in mathematics and
programming, and biology > medicine > maths > computer science to other
student with good marks in chemistry and natural sciences but who does
not like computers. The task has resemblance to supervised classification, in
the sense that we have several predictive attributes (e.g. high school marks
on maths, physics, chemistry, etc., IQ score, age, etc.) and a distinguished
target variable taking values in a set of disjoints labels ({maths, computer
science, biology, medicine}). However there are two important differences:

e The goal is not to predict the best class label for an unseen student,
but to provide a ranking of the class labels, by ordering first the degree
we think best fits to the student, then the second one, etc.

e We use how previous students have ranked the degrees according to
their abilities and preferences. Thus, our training instances will be
labelled with (possibly incomplete) rankings of the available degrees,
which will be used to train the label ranker.

Two problems somewhat related to label ranking, although quite different
from the point of view of the machine learning task they carry out, are ordinal
classification [6] and learning to rank [4].



In ordinal classification a ranking is defined among the class labels. How-
ever, the instances are labelled with a single label and the machine learning
task consists in the induction of a standard classifier, but exploiting the in-
ner structure of the class variable during the learning process. Learning to
rank is a classical problem in information retrieval, although it also has been
applied to other fields as machine translation, computational biology and rec-
ommender systems. In its basic form, it outputs a ranked collection of docu-
ments given an input query, although it also refers to more complex settings.
In the listwise approach to learning to rank [7], the information retrieval task
is helped by using machine learning. In this framework, the input instances
contain a query, a list of relevant documents for the query and a rating for
each document. The ranking of the documents is then obtained from the
ratings. However, for the machine learning process different feature vectors
are used by transforming each instance into a set of triplets (query, docu-
ment, rating), which are used to learn a model f(query,document)—rating.
Thus, once a new query is received, the information retrieval model gets the
relevant documents, which are then ranked by applying the learned model.

In this paper we follow the approach to label ranking introduced in [1].
The goal is to induce a model able to predict complete label rankings by
taking advantage in the learning process of all the available information,
that is, the (possibly partial) rankings of the instances in the training set.

Methods based on the transformation of the whole problem into a set of
single-class classifiers (e.g. label-wise [8, 9], pair-wise approaches [10, 11] or
chain classifiers [12]) are not considered, as we aim to deal with all the depen-
dences simultaneously. To do this, we rely on the work of Cheng et al. [1],
where they manage the problem in a non-standard classification setting, by
designing instance-based (IBLR) and decision/regression tree-based (LRT)
classifiers tailored to cope with training instances labelled with a (partial)
ranking. In order to do that, rankings are managed properly by using the
Mallows probability distribution [13] to model a sample of rankings. More-
over, a proper distance for rankings comparison is used to obtain the consen-
sus ranking for the sample [14] (details are provided in Section 2.1). These
two algorithms obtain a good performance in comparison with competing
approaches [15, 16, 17], IBLR being better than LRT [1] (details in Section
5.2). However, from the computational point of view, IBLR shows two main
drawbacks: (i) it does not scale well to datasets having a large number of

variables and /or instances, and (ii) it needs far more time at inference/query
time than LRT.



Our goal is to improve the performance (accuracy) of the algorithms in
[1] by developing new methods based on the LRT algorithm. In particular
our main contributions are:

o We design two weak learners based on the LRT algorithm by using un-
supervised discretization to select the splitting point. From the com-
plexity study (see Sections 4.1 and 4.2) it follows that the time needed
to learn the weak classifiers is reduced proportionally to N (the number
of instances in the dataset) with respect to LRT. In practice, when the
number of variables grows, they need about 1% of the time needed by
the original LRT (see Section 5.4.3).

e We consider the use of ensembles by using bagging [18]. The results
show that bagging the weak learners is competitive with the ensemble
of LRT in terms of accuracy, but much more efficient in terms of time.
In fact, the approach based on applying bagging to the original LRT
algorithm is not practical under conditions of restricted CPU time.

The approach based on bagging the weak learners is competitive (in
accuracy) not only with respect to the LRT-based ensemble, but also
with respect to the state-of-the-art IBLR algorithm.

e We study the problem of dealing with partial information, that is, the
case when the training instances are labelled with an incomplete rank-
ing. In this scenario, our proposals based on bagging significantly out-
perform the IBLR algorithm, the difference being bigger as the number
of missing labels grows.

The paper is structured as follows. In Section 2 we review some basic no-
tions needed to deal with rank data and introduce the label ranking prediction
problem. In Section 3 we describe the decision tree-based algorithm (LRT)
introduced in [1] to deal with the label ranking problem. Section 4 is devoted
to detail our proposal. We pay special attention to analyze the complexity
of the method described in [1]. In Section 5 we set forth the empirical study
carried out to test the methods designed in this paper, analyzing the results
in detail. Finally, in Section 6 we provide some conclusions.



2 Preliminaries

In this section we review some notions needed to deal with rank data. Then
we properly define the label ranking prediction task.

2.1 Dealing with rankings

Rankings are a natural way to express preferences. Specifically, given a set
of items Z = {1,2,...,k}, a ranking 7 is an order of preference over (some
of) these items. Rankings can be complete (the k items are ranked) or
incomplete (only p items are ranked, 2 < p < k). A ranking is denoted as a
vector of items, from most to least preferred, separated by commas.

Complete rankings are permutations of the items in Z, i.e. the set of
complete rankings on the items of Z is the symmetric group S;. We use Sy, to
denote the set of (complete or incomplete) rankings on the items of Z. Given
7 € Sy, we will denote by 7(i) the i-th ranked element in 7. Given a,b € Z,
we use a >, b to indicate that a precedes b in the ranking 7.

2.1.1 Consensus permutation

Given a dataset or sample with N rankings D = {my,ms,...,7n}, m; € gk,
the rank aggregation problem [14] consists in obtaining the permutation mg €
S; which better represents the rankings contained in the sample. Such a
permutation my is known as the consensus ranking.

Formally, in the rank aggregation problem we look for the permutation
o such that:

N
1
o = argminﬂegkﬁ Z D (m;, m) (1)

i=1

where D(m, 1), m,7 € gk, is a distance measure which counts the number of
item pairs (a,b), a,b € Z, a < b, over which 7 and 7 disagree, ignoring those
pairs non ranked in both rankings m and 7. There is disagreement over a pair
(a,b) (a,b € Z, a < b) of items ranked in both m and 7, if the relative order
of @ and b is different in m and 7. This distance is a generalized version of the
Kendall distance, which takes as input two permutations (see for instance
[19]). When D only contains permutations and the Kendall distance is used
in (1), this problem is known as the Kemeny ranking problem [20].



Computing the consensus permutation is an NP-hard problem. However,
good approximate algorithms can be used. In particular, Borda (or Borda
count) algorithm [21] deserves to be highlighted because of its good trade-off
between efficiency and accuracy [22].

When dealing with complete rankings in Sy, Borda count method pro-
ceeds as follows: first, for each permutation 7 in the dataset it assigns k—i+1
points to the i-th item of 7; then, after processing the whole dataset, it re-
turns the permutation that orders the items from the most valued item to the
least valued one. On the other hand, incomplete rankings are managed by
using generalized Borda count methods [23, 14, 30]. In particular, given an
incomplete ranking 7© we use a method that manages the uncertainty about
the non-ranked items by taking into account all the permutations compati-
ble with 7 (see [1] for the details). Thus, for an incomplete ranking = which
ranks p elements, 2 < p < k, the scoring scheme proposed in [1, Proposition
2] assigns (p —i+ 1)(k+1)/(p+ 1) points to items in positions i = 1,..,p
and (k + 1)/2 points to non ranked items.

2.1.2 Mallows probability distribution

The Mallows model [13] is a distance-based probability distribution over
permutations which belongs to the exponential family. It is defined by two
parameters: the central permutation my € S; and a spread parameter 6 €
[0,400). It is defined in terms of a distance over permutations, e.g. the
Kendall distance (see [24] for details).

Given a permutation 7 and a Mallows model parameterized by 7 and 6,
the probability assigned to 7 is

6*9'D(ﬂ',ﬂ'0)

P(m;mo,0) = W,

where 1(0) is a normalization constant.

The Mallows distribution is strongly unimodal, being 7y the permutation
with the highest probability. On the other hand, # quantifies the concentra-
tion of the distribution around its peak m. Thus, if § = 0 we get the uniform
distribution, while when 6 > 0, the probability of each permutation m € S
decreases according to D(m, mg) and 6.



2.2 Label ranking prediction problem

In this section we formally define the problem addressed in this paper. As our
approach falls in the supervised classification task, we start by introducing
this setting. Standard supervised classification involves learning a model
from a set of labelled data, in order to assign one class label or category
to every new example. Formally, D = {x/, ¢/ }5\[:1 is a dataset containing N
labelled instances; x’ is a configuration of values defined over the n predictive
variables or attributes, X1, Xa,...,X,, i.e. X/ = (le, ..., 23), where xi S
dom(X;); and ¢ € dom(C) = {c',...,c*} is the class label. The goal is to
learn a classifier model from D

C : dom(Xy) x dom(X3) X -+ x dom(X,,) — dom(C),

which generalizes well on unseen data.

In the last years, several classification-based tasks have appeared which
do not follow the standard definition of the supervised classification setting.
This is, for example, the case of weakly supervised problems, where the
information on the class is not fully known for the training instances, or
the case of non-standard classification problems, where the task is no longer
to predict only the most probable class label (see [25] for a recent review
on this topic). The label-ranking problem can be viewed as a non-standard
supervised classification problem, as we know the (partial) rank for all the
training instances, but our goal is to predict a complete ranking, not a single
label.

We define the model to be induced as follows:

Definition 1 (LR-Classifier). Given a set of n discrete or numerical pre-
dictive variables or attributes, X1, Xo,..., X, and a target class variable C,
with domain dom(C) = {1,...,k}, a Label Ranking Classifier (LR-classifier)
C is a function (model):

C: dom(X;) x dom(Xy) X -+ x dom(X,) — S,
(x1,T9,...,xy) —> T
that is, a function that assigns a permutation of the values in dom(C') to any
configuration (1, xa,...,x,) € dom(X;) x -+ x dom(X,,).

The goal of the label ranking prediction problem is to learn an LR-
classifier from the data. Notice that a LR-classifier always returns a complete
ranking. However, as will be immediately detailed, we allow the presence of
incomplete rankings in the training instances.
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Definition 2 (LR prediction problem). Given a datasetD = {(], ... xi 79) g
where 21 € dom(X;) and ©@ € Sy, the Label Ranking Prediction problem (LR
prediction problem) consists in learning an LR-classifier from D which gen-

eralizes well on unseen data.

3 Decision tree algorithm for label ranking

Decision tree induction is one of the most used machine learning methods,
both for classification [26] and regression tasks [27]. In this section we de-
scribe the algorithm proposed in [1] to adapt the decision tree induction
algorithm to the label ranking problem.

As its name indicates, a decision tree is a tree-shaped decision model
which is used to make predictions given an input. In contrast to classification
[26] or regression/model trees [27, 28, 29|, in the label ranking problem each
leaf contains a complete label ranking [1] (Figure 1).

As in [1], we assume that there is no missing values in the training set
regarding the predictive attributes, but that some instances can be labelled
with incomplete rankings. We describe the complete case and comment on
the particularities of dealing with incomplete rankings.
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Figure 1: Decision tree example for label ranking.

3.1 Learning the decision tree

Most of the decision tree induction algorithms [26, 27] work recursively. Thus,
at each call the method receives a set of instances R = {(z7,..., 2}, 7/)}5_,,



k < n,s < N and must decide either stopping the process by creating a
leaf (target) node or using a predictive attribute X; to split R into several
subsets according to the value taken by X;. Let Ry = {n7}*_, be the set of
label rankings in R.

Let us start with the stopping criteria. In [1] a leaf node is created if any
of the two following conditions is true:

o D(n',77) =0 for all 7,7 with 1 <4,j < s, i.e. there is no disagreement
among the rankings included in Ry;.

— In the complete case this means that all the rankings are the same,
and so this is the value taken as output for the leaf node.

— When Ry contains incomplete rankings this process is more com-
plex. Even if no disagreement exists (e.g. Z = {a,b,c} and
Ry = {a > b,a >, ¢,b >, c}) the consensus permutation
for Ry must be computed. In [1] a two-steps procedure is used:
first, a consensus permutation for Ry is computed by using a gen-
eralized Borda algorithm based on the notion of extension sets
[1, 23, 30]; second, an iterative process is run which consists in
(i) the completion of the incomplete rankings in Ry by using the
consensus previously obtained, and (ii) in the estimation of a new
consensus from the completed rankings. This iterative process
finishes when the new consensus is equal to the previous one.

Remark 1. In our experiments we realized that the use of com-
pletion does not significantly increase the accuracy of the obtained
models, but it significantly increases the required CPU time. Be-
cause of this and since our goal is to apply bagging over LRT-
based algorithms, we decided to avoid the completion phase, set-
ting as consensus permutation the one obtained by directly using
the extension-sets-based generalized Borda count algorithm.

e s < 2n. That is, the number of instances arriving to the current node is
less than or equal to twice the number of class labels. In this case, the
output is set to the consensus permutation for Ry obtained by using
the (generalized) Borda count algorithm.

This stopping criterion has a side effect, as it also works as a sort of
pre-pruning. In fact, no post-pruning step is used in [1].



If none of the two previous conditions occurs, then the algorithm selects
an attribute X; to split R. Greedy inductive algorithms select the attribute
that most reduces the uncertainty on the target variable for the obtained
splitting. For example, the one that most reduces the conditional entropy
H(C|X;) is selected for classification trees [26] and the one that most reduces
the variance on the target variable Y is selected for regression trees [27]. The
authors in [1] propose to exploit the resemblance between the spread param-
eter 6 (from the Mallows distribution) when dealing with rankings and the
variance when dealing with numerical variables, to select as decision variable
the one reducing the uncertainty of the resulting partition. Formally, given
an attribute X; taking values in dom(X;) = {z},...,z'}, the uncertainty
associated to a partition {Ry,...,R,,} is inversely proportional to

P = F(Rus Ry ) = 30 P @)

where 0; is the spread parameter corresponding to the Mallows distribution
estimated for the set of label rankings in Rj, the highest ¢; the more con-
centrated around the peak is the sample. Then, the algorithm selects as the
splitting variable the one maximizing f(X;), 1 <i < n.

For the estimation of the Mallows model parameters given in Ry, a two-
steps maximum likelihood estimation (MLE) approach is followed. First, the
consensus permutation 7y is obtained by using the (generalized) Borda count
method. Then, once 7y is known, the computation of # can be carried out
by means of standard numerical optimization methods (see [1, 22, 24] for the
details).

In the case of numerical variables, the algorithm proceeds in a standard
way, that is, selecting a threshold t and dealing with the resulting two-states
discrete variable X!: dom(X}) = {X; <t,X; > t}. To select the threshold
t, all' the (different) values for X; in R are analyzed as possible thresholds
and the one maximizing f(X/) is selected.

3.2 Inference

Given an instance, inference is, in general, quite simple: just start at the root
node and traverse the tree by following the appropriate path according to

n fact, we skip the first/last values which lead to partitions with less than n instances
in one of the branches. This rule is aligned with the pre-pruning strategy described above.
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the values for the predictive attributes in the instance being classified. Once
a leaf node is achieved, it returns its associated permutation.

However, note that in the incomplete case some leaves could not contain
a (complete) ranking. In this case, the returned ranking is completed by
using the information gathered in the predecessor nodes of such leaves [1].

4 Proposal: An ensemble of simpler learners

The use of an ensemble of classifiers instead of a single one leads, in general,
to an improvement in accuracy [31]. One of the simplest techniques to build
such an ensemble is Bagging [18], which in its canonical form basically consists
in:

e Using bootstrap sampling to generate b different bags {Dy,..., D}
from the original dataset D.

e Using a machine learning algorithm to learn a model M; for each dataset
D;,.

e Given a new instance, x = (z1,...,%,) to be classified, it returns
g(M;(x), ..., My(x)), where M;(x) is the value returned by model M;
and ¢ is an aggregation function, e.g., majority voting.

In this paper we aim to study the effect of bagging decision trees in the
problem of label ranking. In particular, the idea is to learn b decision trees
from the set of bags and then to use the consensus permutation obtained from
{M;(x),..., My(x)} as aggregation function. However, as well as we expect
to increase the accuracy by using bagging, we also expect an increase in the
computational complexity. Because of this, our first goal is to reduce the
complexity of the base classifier to be bagged. Thus, we propose two simpler
algorithms to learn the trees. Basically, we reduce the learning complexity
by strongly decreasing the number of computations needed to decide the
splitting point. As a consequence, weak models are obtained by using these
faster learners, but when combined into an ensemble, it gets accurate results.

In this section we first study the (time) complexity of learning decision
trees for label ranking and bagging them. Next we introduce our modifica-
tions to get less expensive learning.
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4.1 Complexity of tree induction for label ranking

We focus our study on the case of numerical predictors as in [1]. This is the
most computationally demanding case and the one we consider to simplify
the LRT algorithm. Furthermore, we only deal with the case of complete
rankings, as the proposed modifications do not take into account the com-
pleteness of the rankings.

Firstly, we consider some standard assumptions: k& < n, £ < N and
n < N. Secondly, let us assume that the depth of the tree is log(N), which
is the standard assumption for a balanced tree [32]. Finally, as usual, we
consider that at each level of the tree, each attribute is processed once over
the whole dataset, i.e. the N instances?. Therefore, the time complexity of
learning is log(NN) times the complexity of the operations performed at each
node/level:

e Stopping condition. In essence, it reduces to check wether all the rank-
ings are the same, which requires O(kN).

e Leaf node. Borda count method is used to obtain the consensus per-
mutation. Its computational complexity is O(kN + klog(k)), where the
first part is due to counting and the second one to the sorting process.

e Decision node. All the n attributes must be checked in order to decide
the most informative one. For each attribute X; the threshold leading
to the best binary split must be identified. This implies to check all the
N values as potential thresholds. Therefore, the first step is to sort? the
values of X; which requires O(Nlog(N)). For each threshold, the vari-
able is considered as a discrete one X} with two states {X; < t, X; > t}
and (2) is used to evaluate its goodness. This requires to compute 7
and 0 twice, one for each side of the threshold, which computation-
ally is equivalent to compute the two parameters only once for the N
values. As mentioned above, computing m, by using Borda count is
O(kN + klog(k)). On the other hand, the complexity of computing

2At each level, the number of instances processed per node is different, but the union
of them is N.

3In fact, if the algorithm is implemented carefully, this sorting only is needed the
first time an attribute is analyzed. Therefore, this requires O(nNlog(N)) to sort all the
variables before starting the decision tree construction process.
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0 is bounded by* O(k?N + k?) [33, pg. 51]. Thus, the complexity of
computing the two parameters is kN + klog(k) +k*N + k*, which leads
to O(k*N). Finally, as these parameters are computed for each one

of the n attributes and taking every value (N) as threshold, we get
O(nk*N?).

Then, the complexity order for the whole learning process is given by
O(nNlog(N) + log(N)(kN + max{kN + klog(N),nk* N?}))

that is,
O(nk*N?log(N)). (3)

Regarding inference, classifying a new instance requires O(log(N)), as
this is the depth of the tree.

With respect to bagging, as learning dominates the sampling process,
the complexity of the learning stage is b times the complexity of learning a
single tree. On the other hand, the complexity of inference is O(blog(N))
for classifying the given instance using the b trees, plus O(kb + klog(k)) for
the aggregation phase (Borda count).

4.2 W-LRT and F-LRT

In this section our goal is to reduce the complexity of computing the splitting
point. The splitting criterion described above can be viewed as a supervised
discretization criterion which produces optimal splits for the label ranking
problem. As studied above, this is the most time demanding step in the
construction of the tree. Therefore, in this section, we propose two modified
versions of the LRT algorithm that differ from the original one only in the
way they compute the splitting point for each attribute. In particular, we
propose to select the splitting point by using two well-known unsupervised®
discretization criteria: equal-width and equal-frequency.

Our aim is to avoid the analysis of all the N possible splitting points.
Thus, instead of checking the N possible thresholds, we propose to set the

4In fact, the complexity reported in [33, pg. 51] is bounded by O(k?). However a
precedence matrix is required which needs O(k%N).

A supervised discretization for the label ranking problem has been proposed in [34].
We did not use it because (i) applying it at each node will not decrease the complexity of
the process, since it tries all the possible thresholds, and (ii) applying it as a pre-processing
procedure leads to trees with a large branching degree, which traduces into a low accuracy.
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mid point without carrying out any test. On the other hand, in this way
we use far less knowledge than when doing the supervised selection, and so
we may expect a weaker model. However, the combination of these weaker
models with bagging will allow to obtain better results, as bagging predictors
have shown to be effective especially when using weak base classifiers.

As said above, we propose the use of two simple and well known unsu-
pervised discretization techniques:

e Equal width (W-LRT). In this algorithm we choose as threshold for each
variable X; the value which splits its domain into two intervals of equal
width. Running over all the N values of X; in order to identify the
smallest and biggest ones requires O(N).

Example.
X, (4, 16, 0, 12, 28, 24, 26, 16, 18)
t = mean(0,28) = 14 ~ {X; < 14, X, > 14}

Then, the complexity order for the whole learning process is given by
O(log(N)(kEN + maz{kN + klog(N), (k*N + N)n)})

that is,
O(nk*Nlog(N)). (4)

e Equal frequency (F-LRT). In this algorithm we choose as threshold for
each variable X; the value which creates two bins having the same
number of values. This requires O(Nlog(N)) to sort the N values of
X;, and then take the value in the middle position as threshold. As
already commented, this sorting process only needs to be performed
once for each variable. Hence, addressing the middle point of such a
sorted array requires O(1).

Example.
sort(X;): (0, 4, 12, 16, 16, 18, 24, 26, 28)

Then, the complexity order for the whole learning process is given by

O(nNlog(N)+
log(N)(kN + max{kN + klog(N), (k*N + 1)n)})

that is,
O(nk*Nlog(N)). (5)

All in all, the complexity regarding LRT has been reduced by O(N).
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5 Experimental evaluation

In this section we carry out an empirical study of the proposed methods.
Next, we describe the used datasets, the involved algorithms and the exper-
imental methodology.

5.1 Datasets

We use as benchmark a total of 21 datasets. The first 16 were proposed
in [1] and used since then as a standard benchmark for the label ranking
problem. They can be considered semi-synthetic, as they were obtained by
transforming a multi-class (()) or regression ((,y) problem to a label ranking
one (see [1] for the transformation details). The last 5 datasets correspond
to real-world biological data problems and were used in [10]. In this case the
expression profile of the output gene (e.g. (1.7, 2.9, 0.3, -2.4)) was directly
converted into a rank (e.g. (2, 1, 3, 4)). All the datasets, conveniently format-
ted for the label-ranking problem, can be downloaded from https://www.
uni-marburg.de/fb12/kebi/research/repository/labelrankingdata. Ta-
ble 1 shows the main features of each dataset. The columns max #rankings
and #rankings stand for the maximum number of label rankings (k!) and
the actual number of different label rankings in the dataset, respectively.

5.2 Algorithms

In the study we consider the following algorithms:
e The LRT algorithm [1] (see Section 3).

e The two proposed algorithms based on unsupervised discretization: W-
LRT and F-LRT (see Section 4.2).

e The ensemble approaches constructed by applying bagging to the three
LRT based algorithms: LRTb, W-LRTb and F-LRTb. Here b denotes
the number of models considered in bagging.

e As reference we also consider the IBLR algorithm proposed in [1], an
instance-based method which returns as outcome the consensus permu-
tation for the k nearest neighbours, computed by combining the gener-
alized Borda count with an iterative improving method. Euclidean dis-
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Table 1: Datasets.

Dataset #instances Fattributes max #rankings #rankings
authorship,, 841 70 4! 17
bodyfat,) 252 7 7! 236
calhousing, 20640 4 4! 24
cpu-small 8192 6 5! 119
elevators 16599 9 9! 131
fried,) 40769 9 5! 120
glassc) 214 9 6! 30
housing, 506 6 6! 112
il“iS(c) 150 4 3! )
pendigits ) 10992 16 10! 2081
segment,.) 2310 18 7! 135
stock 950 5 5! 51
vehicle) 846 18 4! 18
vowel ) 528 10 11! 294
wine ) 178 13 3! 5
wisconsin, 194 16 16! 194
Spo 2465 24 11! 2361
heat 2465 24 6! 622
dtt 2465 24 4! 24
cold 2465 24 4! 24
diau 2465 24 7! 967
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tance is taken to identify the nearest neighbours. The number of neigh-
bours considered is set by cross validation, taking values in [1,v/N].

To justify the selection of the IBLR as the baseline algorithm we have
collected the results of several published studies that propose LR algorithms
based on different machine learning paradigms and that use the benchmark
of datasets proposed originally in [1]. Thus, Table 2 shows the results (aver-
aged Kendall coefficient for a 5x10 cross validation) reported in the source
references for the following algorithms in the complete case (see next subsec-

tion):

IBLR and LRT [1]. In this case we report the results obtained by our
own implementation.

IB-PL [17]. An instance based method similar to IBLR but using the
Plackett-Luce model [35, 36] instead of the Mallows one to model the
probability distribution over permutations.

Lin-PL [17]. An algorithm based on the estimation of generalized linear
models by using the Plackett-Luce model to model the distribution over
permutations.

MLP [16]. A label ranking algorithm based on a multilayer percep-
tron. Several algorithms result from the way in which the weights are
corrected during the back propagation process. Here we report the re-
sults of the best one, a combination between global and local correction
processes.

Apriori [15]. A label ranking algorithm based on adapting the Apriori
algorithm to discover association rules whose consequents are rankings.
The authors apply the algorithm using two different discretizations. We
have taken the best result for each dataset.

Although the results reported above may consider different partitions for
the repeated cross validation, we think that the average over the 50 runs
(5x10 cv) is representative enough to provide a fair estimation. In Table 2,
between parenthesis and close to the algorithm name, we show the average
rank of each algorithm. In the light of the ranking obtained, IBLR is taken
as the baseline algorithm for comparison in this study.
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Table 2: Mean accuracy for complete rankings comparing different ap-
proaches.

method aut bod cal cpu cle fri gla hou iri pen seg sto veh vow win wis

IBLR (1.63) 0.933 0.200 0.367 0484 0.726 0949 0.883 0.764 0.966 0.946 0.958 0.928 0.860 0.919 0.932 0.487
IB-PL (2.41) 0.936 0.230 0.326 0.495 0.721 0.894 0.841 0.711 0.960 0.939 0.950 0.922 0.859 0.851 0.947 0.479
LRT (3.25) 0.885 0.193 0.398 0.475 0.773 0.886 0.845 0.740 0.928 0.924 0944 0.892 0825 0.692 0.883 0.330
Lin-PL (3.56) 0.930 0.272 0.220 0.426 0.712 0.996 0.825 0.659 0.832 0.909 0.902 0.710 0.838 0.586 0.954 0.635
Apriori (4.34) 0.57 0.160 0.290 0.440 0.640 0.770 0.850 0.760 0.960 0.690 0.900 0.890 0.750 0.720 0.910 0.280
MLP (5.63) 0.829 0.074 0.106 0.357 0.684 0.660 0.757 0.574 0.800 0.752 0.842 0.745 0.800 0.545 0.874 0.235

5.3 Methodology

The following design decisions have been adopted:

e In all the cases the algorithms are assessed by using five repetitions of
a ten-folds cross-validation (5x10cv).

e Asin [37, 1], the Kendall coefficient is used as goodness score. Specif-
ically, given two permutations 7, and m in Sy this coefficient is given

by

C ) - D )
T (M1, ™) = m 7T213(1c—1) o @)’ (6)

2

where C(my,ms) (resp. D(m,ms)) is the number of concordant (resp.
discordant) pairs between m; and .

The Kendall coefficient ranges between -1 and 1. The closer to 1 the
better the correlation. Values close to -1 can also be useful as they show
a good correlation between a ranking and its inverse. Values close to 0
mean poor correlation between the two rankings.

e We consider three different scenarios: (i) complete case; (ii) incomplete
case with 30% of missing labels in the rankings; and (iii) incomplete
case with 60% of missing labels in the rankings.

To deal with the incomplete cases, we remove labels from the rank-
ings in the corresponding training sets with probability 0.3 and 0.6,
respectively. In any case, incomplete rankings cannot have less than 2

labels®.

e In the case of the ensembles we set b in {5, 10, 15,20, 25, 30, 50, 100}.

6This is also the procedure followed in [1]
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e All the algorithms have been written in Java. The experiments have
been carried out in computers running Linux operating system and
with a maximum of 20 GB of RAM memory.

5.4 Results

In this section we present the results obtained as well as their analysis. We
divide the study into accuracy, tree-size and time.

5.4.1 Accuracy

Tables 3, 4 and 5 show the results for the three scenarios considered. The
values in the cells correspond to the mean Kendall coefficient 75 between the
current and the predicted permutations, averaged over the test sets of the
5x10cv. In order to make easier the interpretation of the results, the algo-
rithm(s) obtaining the best result for each dataset has(have) been boldfaced.

Table 3: Mean accuracy for each algorithm with complete rankings applying
bagging.

# Bagging ant__ bod cpu__cle i ___gla__hou i pen  seg _ sto___veh _vow _win___wis___spo__ hea _dit___col __ da
LRT 088 0.193 0475 0.773 0836 0815 0740 0928 0924 094 0892 0825 00692 0883 0330 0120 0.045 0.093 0058 0.169
W-LRT 0829 0.146 0457 0767 0.851 0.806 0.696 0942 0907 0928 0.879 0799 0.668 0861 0125 0.048 0.084 0053 0.188
F-LRT  0.857 0.154 0474 0772 0.854 0.809 0.686 0896 0904 0928 0872 0814 0.654 0856 0126 0.045 0.086 0.057 0.175

- IBLR 0.933  0.200
LRT 0.902  0.196

0484 0.726 0949 0.883 0.764 0.966 0.946 0.958 0.928 0.860 0.919 0.932
0498 0.778 0923 0848 0.749 0944 0938 0951 0896 0.849 0.731 0.899
W-LRT 0.886 0.191 . 0479 0.774 0.872  0.801 0.705 0.945 0919 0938 0888 0.834 0.696 0.904
5 F-LRT  0.894 0.181 0. 0.493  0.775  0.895 0.932  0.920 0939 0.885 0.833 0.695 0.887
LRT 0.910 0212 0.450 0.511  0.784  0.936 0946 0.942 0955 0.902 0.858 0.744  0.910
W-LRT 0.899 0.207 0421 0489 0.779 0.880 0.951 0922 0940 0892 0.846 0.704 0.915

0.089  0.216 0.127 0.073 0.139
0.132 0.051 0.101 0.069 0.195
0.136  0.052  0.105 0.065 0.204
0.137  0.048 0.099 0.068 0.198
0.140  0.060 0.117  0.082 0.213
0.142  0.061 0.119 0.078 0.218

10 F-LRT  0.906 0.192 0406 0.504 0.780  0.909 0.941 0924 0942 0893 0841 0.706 0.901 0.144  0.058 0.115 0.080 0.215
LRT 0.912 0.459 0516 0.786  0.943 0.951 0943 0956 0.904 0.862 0.749 0917 0.144  0.066 0.125  0.090  0.221
W-LRT  0.905 0.430  0.492  0.781 0.884 0. 0.956  0.923 0942 0893 0.850 0.707 0.920 0.144  0.065 0.126  0.086 0.224

15 F-LRT  0.909 0414  0.508  0.782  0.916  0.83 0.945 0926 0944 0896 0.844 0.711  0.905 0.147  0.064 0.122  0.086 0.223
LRT 0.914 0.464 0519  0.787  0.946 0.855 0.760  0.950 0.956  0.905 0.864 0.752  0.919 0.145 0.069 0.131  0.093  0.226
W-LRT  0.908 0434 0494 0782 0.886 0.811 0.713 0.958 0.942  0.893 0.853 0.708 0.924 0.146  0.068 0.130 0.090 0.227

20 F-LRT 0911 0.418 0510 0.783 0.919 0.838 0.948 0.944 0.898 0.845 0.713  0.908 0.149  0.068 0.126_ 0.091 7
LRT 0.915 0.467  0.520 0.788  0.948  0.856 0.952 0.957 0906 0.865 0.753  0.920 0.146  0.071 0.135 0.097
W-LRT  0.909 0.437 0495 0.783  0.887 0.811 0.959 0.943  0.894 0.854 0.709 0.926 0.146  0.071  0.132  0.094

25 F-LRT 0912 0206 0421 0.511 0.783 0922 0.839 0.736  0.950 0.927 0945 0.898 0.846 0.714 0.909
LRT 0.915 0.227 0469 0521 0.783 0.949 0.856 0.761 0.952 0.944 0.957 0.906 0.865 0.754 0.920
W-LRT 0.910 0.222 0439 0496 0.783 0.888 0.813 0.958 0.924 0943 0894 0855 0.710 0.928
30 F-LRT 0913 0207 0423 0512 0.781 0.923 0.839 0.950 0.928 0.945 0.899 0.847 0.715 0.910
(
0

0.149  0.069 0.129 0.094 0.229
0.147  0.074  0.136  0.099  0.230
0.147  0.072  0.136  0.096
0.150  0.071  0.133  0.097
0.149  0.076  0.144  0.104

LRT 0.916  0.230 0.523  0.789  0.952  0.857 0.955  0.945 957 0.907 0.867 0.756 0.923
W-LRT 0.912 0223 0.4 0.497  0.784  0.889 0813 0.961  0.924 943 0.895 0.857 0.711  0.929 0.147  0.076  0.141  0.102
50 F-LRT 0915 0210 0427 0514 0.784 0.926  0.840 0 0.928 0946  0.900 0.849 0.717 0.913 0.152 0.076  0.136  0.102
LRT 0916  0.233 0.476 0.524 0.790 0.955 0.856 0.956  0.945 0.958 0.907 0.867 0.758 0.924 0.389 0.149 0.080 0.148 0.107
W-LRT 0914 0225 0447 0498 0.784 0891 0813 0.961 0925 0944 0894 0858 0.711 0928 0340 0.148 0.081 0.145 0.107
0.956  0.929 0946 0901 0.850 0.719 0.916 0.384 0.153 0.079 0.140 0.106

ol

100 F-LRT 0916 0210 0429 0515 0.785 0.929 0.839

Before going into a deeper (statistical) analysis, let us draw some prelim-
inary conclusions from the obtained results:

e Although the original supervised LRT algorithm obtains, in general,
better results than W-LRT and F-LRT, these two algorithms based on
the use of unsupervised discretization show a good performance.
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Table 4: Mean accuracy for each algorithm using rankings with 30% missing
labels applying bagging.

7 Bagging ant__ bod___cal [
LRT 0854 0.052 0363 0443 0760 0363
W-LRT 0817 0.131 0330 0432 0744 0827
F-LRT  0.846  0.041 0313 0448 0755 0.834
- IBLR 0.923 0.163 0342 0475 0.712  0.926
LRT 0890 0.74 0395 0478 0768 0905
W-LRT 0.871 0168 0370 0460 0758 0848
5 F-LRT  0.883  0.157 0342 0474 0762 0.871
LRT 0.901  0.194 0425 0497 0.779  0.924
W-LRT 0.890 0.185 0400 0475 0.769 0.861
10 F-LRT  0.900  0.176  0.372 0491 0773 0.890
LRT 0004 0201 0436 0504 0.783 0933
W-LRT 0.896 0.193 0412 0481 0773 0867
15 F-LRT  0.905 0.183 0384 0496 0.776_ 0.898
LRT 0906 0205 0442 0508 0784 0937
W-LRT 0.899 0.197 0418 0483 0775 0869

iri pen seg sto veh VoW win wis spo hea dtt col dia
0918 0916 0935 0.873 0.815 0.673 0848 0.331 0.106 0.030 0.069 0.047 0.156
0.907  0.894 0917 0.863 0.784 0.651 0.856 0.255 0.116 0.037 0.076 0.041 0.170
0.885  0.893 0918 0.854 0.801 0.645 0836 0317 0.115 0.034 0.065 0.035 0.155
0.909 0924 0931 0.901 0.836 0.823 0.885 0.445 0.078 0.199 0.112 0.058 0.127
0931 0932 0944 0.881 0.839 0.715 0.884 0365 0.125 0.043 0.088 0.057 0.180
0922 0908 0929 0.872 0.821 0.685 0.887 0305 0.131 0.044 0.094 0.057 0.187
0.914 0910 0930 0.866 0.821 0.684 0.877 0.355 0.129 0.043 0.085 0.054 0.181
0936 0.939 0949 0.890 0.852 0.730 0.902 0.376 0.137 0.051 0.103 0.070  0.200
0932 0914 0935 0.880 0.836 0.698 0.905 0318 0.139 0.053 0.110 0.067 0.206
0.930 0917 0937 0.877 0.834 0.700 0.898 0.365 0.139 0.051 0.102 0.067 0.201
0.938 0941 0950 0.893 0.857 0.735 0910 0380 0.141 0.056 0.112 0.076 0.211
0.938 0916 0937 0.883 0.843 0.702 0909 0323 0.142 0.057 0.117 0.074 0.214
0.936 0.939  0.881 0.838 0.704 0.904 0.369 0.143 0.056  0.106  0.073  0.211
0.938 . 0.951  0.894 0859 0.739 0913 0382 0.143 0.060 0.116 0.079 0.216
0.939 0917 0938 0.885 0.845 0.704 0912 0325 0.143 0.061 0.123 0.078 0.218
20 F-LRT  0.907 0.186 0.391 0.499 0.778  0.902 0938 0.921 0940 0.883 0.841 0.707 0.906 0.370 0.145 0.060 0.113 0.076  0.216
LRT 0.907  0.209 0446  0.510 0.785 0.940 : 3 0940 0943 0952 0895 0861 0.740 0916 0.384 0.145 0.062 0.121 0.083 0.219
W-LRT 0.901 0202 0422 0485 0.777 0871 0.799 0.699 0943 0918 0939 0.885 0.847 0.705 0913 0326 0.144 0.063 0.126 0.081 0.220
25 F-LRT  0.909 0.189 0.394 0501 0.779  0.905 0.827 0.725 0.941 0922 0941 0885 0842 0.709 0.910 0372 0.146 0062 0.116 0.080 0.219
LRT 0.908 0211 0448 0511 0.786 0.942 0.844 0.743 0941 0943 0952 0.896 0861 0.742 0917 0385 0.146 0.064 0.124 0.087 0.221
W-LRT 0.902 0204 0425 0486 0.777 0872 0.799 0.700 0.942 0918 00939 088 0.848 0.706 0.916 0.327 0.144 0064 0.129 0.083 0.222
30 F-LRT 0.911 0.189 0.397 0.502 0.779 0.907 0.827 0.726 0.943 0.922 0.941 0.886 0.844 0.710 0.912 0.372 0.147 0.064 0.119 0.081 0.221
LRT 0.910 0217 0453  0.514  0.783 0.946 0.843 0.744 0.940 0.944 0952 0.897 0.863 0.744 0.921 0387 0.148 0.068 0.130 0.090 0.227
W-LRT 0.905 0.206 0.430 0.488 0.779 0.875 0.800 0.702 0944 0919 0940 0.887 0.850 0.708 0.919 0329 0.146 0.067 0.134 0.088 0.226
50 F-LRT 0913 0195 0402 0504 0.781 0912 0828 0.727 0.942  0.887 0.846 0.712 0915 0373 0.149 0.068 0.124 0.086  0.225
LRT 0912 0.218 0.457 0.517 0.789 0.949 0.845 0.744 0.953 0.897 0.866 0.746 0.923 0.388 0.150 0.075 0.140 0.094 0.231
W-LRT 0.907 0209 0435 0490 0.780 0877 0.801 0.702 0.940  0.888 0.852 0.708 0915 0.331 0.146 0.070 0.139 0.093  0.229
100 F-LRT 0916 0200 0407 0505 0.782 0915 0828 0.729 0.945 0924 0942 0880 0847 0714 0918 0374 0.151 0072 0.129 0.091 0.230

Table 5: Mean accuracy for each algorithm using rankings with 60% missing
labels applying bagging.

# Bagging aut bod cal cpu ele fri gla hou iri pen seg sto veh vow win wis spo hea dtt col dia
LRT 0.791  0.087 0283 0.368 0.710 0.786 0.768 0.634 0.772 0.882 0.906 0.799 0.743 0.638 0.721 0.303 0.086 0.024 0.049 0.026 0.121
W-LRT 0.718 0.099 0.244 0.369 0.680 0.746 0.716 0.627 0.667 0.851 0.872 0.786 0.608 0.683 0238 0.096 0.029 0.055 0.034 0.132
F-LRT 0770 0.098 0.225 0.379 0.698 0.765 0.741 0.606 0.698 0.855 0.872 0.771 0.608 0.644 0288 0.092 0.021 0.058 0.023 0.120
- IBLR 0.779 0126 0.279  0.450 0.678 0.885 0.681 0.637 0.642 0.896 0.877 0.831 0.704  0.639 0.375 0.057 0.162 0.088 0.040 0.103
LRT 0.868 0.137 0.325 0429 0.729 0.860 0.783 0.663 0.816 0.902 0.919 0.830 0.673  0.811 0.333  0.108 0.030 0.074 0.039  0.146
W-LRT 0.822 0.129 0.284 0411 0.709 0.792 0.738 0.637 0.735 0.874 0.891 0.811 0.651  0.748 0.280 0.114 0.029 0.073 0.037 0.153
5 F-LRT 0.844 0119 0258 0425 0.718 0815 0.758 0.644 0.768 0.879 0.896 0.805 0.648  0.739 0326 0115 0.029 0.069 0.037 0.145
LRT 0.888  0.154 0357 0.462 0.755 0.893 0.804 0.684 0842 0919 0930 0.851 0.697  0.835  0.352  0.122 0.037  0.087  0.047  0.169
W-LRT 0.858 0.147 0.315 0439 0.737 0818 0.759 0.655 0.761 0.891 0.908 0.834 0.672  0.774 0293  0.127  0.035 0.045 0177
10 F-LRT 0.875 0.137 0.289 0455 0.744 0846 0.783 0.666 0.793 0.896 0915 0.831 0.673  0.763  0.341 0.128  0.036 0.045  0.170
LRT 0.895 0.160 0.371 0474 0.765 0.906 0.812 0.925 0934  0.858 0.706  0.852  0.359 0.129  0.040 0.053  0.182
W-LRT 0.872 0.155 0.328 0450 0.748 0.828 0.769 0.896 0914  0.841 0.680 0.788 0299 0.132 0.038 0.052  0.187
15 F-LRT 0.887 0.144 0.302 0.467 0.754 0.858 0.791 0.902 0922 0.841 0.681 0.777  0.347 0.133  0.040 0.051  0.182
LRT 0.897  0.167 0.379 0481 0.770 0913 0.815 0.928 0936 0.862 0.711  0.857  0.363  0.132  0.041 0.057  0.189
W-LRT 0.878 0.161 0.336 0.456 0.753 0.833 0.771 . 0.899 0916  0.846 0.684  0.796  0.303 0.134  0.039 0.055  0.193
20 F-LRT 0.893 0.147 0.309 0473 0.759 0.865 0.793 0.679 0.809 0.905 0.925 0.846 0.686  0.788  0.350 0.135 0.043 0.056  0.189
LRT 0.899 0171 0384 0485 0.773 0917 0817 0.695 0.849 0.930 0.937 0.864 0.714  0.860 0.366 0.134  0.044 0.060  0.193

W-LRT 0.883 0.164 0.341 0459 0.757 0.836 0773 0.666 0.767 0.901 0918 0.848 0.686  0.801 0.304 0.136  0.041 0.056  0.198
25 F-LRT 0.896 0.151 0.314 0476  0.762 0.869 0.796 0.681 0.812 0.907 0.927 0.849 0.689 0.794 0351  0.137  0.044 0.058  0.194
LRT 0.901  0.173  0.387 0483 0.775 0.920 0.818 0.697 0.851 0.931 0.937 0.865 0.715  0.865 0.367 0.135 0.045 0.061  0.197
W-LRT 0.885 0.167 0.344 0462 0.759 0.837 0775 0.668 0.770 0.902 0919 0.850 0.688  0.801  0.306 0.137  0.043 0.057  0.201
30 F-LRT 0.898 0.152 0.317 0479 0.764 0.872 0.798 0.683 0.815 0.908 0.928 0.851 0.690  0.797  0.353 0.139  0.046 0.059  0.197

0.719  0.868 0.370 0.138 0.047 0.109 0.065 0.206
0.691  0.806 0.308 0.138 0.045 0.109 0.061 0.207
0.693  0.800  0.355 0.141 0.049 0.103  0.063  0.205
0.722 0.867 0.372 0.141 0.050 0.114 0.070 0.213
0.694  0.809 0.310 0.140 0.048 0.114 0.065 0.212
0.697  0.802  0.356  0.143 0.054 0.110 0.069 0.213

LRT 0.903  0.177  0.394 0494  0.779 0927 0.823 0.699 0.856 0.933 0.939 0.868
W-LRT 0.891 0.170 0.350 0.467 0.764 0.842 0.778 0.670 0.767 0.905 0.921 0.854
50 F-LRT  0.902 0156 0.324 0484 0.768 0.878 0.800 0.687 0.822 0.911 0.930 0.855
LRT 0.905 0.180 0.400 0.499 0.782 0.932 0.825 0.699 0852 0.935 0.940 0.870
W-LRT 0.895 0175 0.356 0471 0.767 0.845 0.781 0.672 0.765 0.907 0.923 0.855
100 F-LRT  0.907 0.156 0.330 0.488 0.771 0.883 0.801 0.690 0.828 0.912 0.932 0.857
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e The algorithms using bagging have better accuracy when compared to
the based models alone. This fact can be clearly observed from Figures
2, 3 and 4, where we show the accuracy averaged over the 21 datasets
(y axis) as a function of the number of models (x axis) considered in
the ensemble.

e Neither LRT nor W-LRT and F-LRT are competitive with respect to
the ensembles, even when using a small number of models. This fact
can be observed in Tables 3, 4 and 5 and Figures 2, 3 and 4.

e In the complete case IBLR shows a very good performance. The ensem-
bles require a big number of models to be competitive with it. Things
are quite different in the incomplete cases, where IBLR is clearly de-
feated by the ensembles, even when using a small/moderate number of
models. In this case it seems that solving the rank aggregation problem
by using a two-level process (first at the level of each tree, and then
aggregating the output of the trees) helps to reduce the uncertainty
introduced by the partial rankings in the training set.

e The best ensemble is the one using the original LRT algorithm as base
classifier, although it is also the most expensive one in terms of time.
Ensembles based on W-LRT and F-LRT also show a good performance.

However, as mentioned above, in order to be in a position of extracting
sound conclusions, for each of the three scenarios we have carried out a
statistical analysis according to the standard procedure described in [38,
39] by using the software available in [40]. Following the recommendations
included in those articles, the number of datasets in the statistical study
should be at least twice the number of algorithms. Thus, we include in
the study the two base classifiers from [1] LRT and IBLR, the two LRT-
based unsupervised discretization techniques W-LRT and F-LRT, and the
ensembles based on LRT, W-LRT and F-LRT with 6 = 25 and b = 100
models. The procedure can be summarized in two steps:

e First, we perform a Friedman test [41]. By using a significance level of
5% the test rejects the null hypothesis that all the tested algorithms
are equivalent with p-values 5.6971e?* (complete case), 3.9116e~2* (in-
complete case, 30%) and 1.2632¢~27 (incomplete case, 60%).
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Figure 3: Accuracy of each algorithm averaged over all the datasets (rankings
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Incomplete rankings (60% missing labels) results
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e Next, we perform a post-hoc test by applying Holm’s procedure [42]
also using a 5% significance level. This test compares all the algorithms
against the one having the best mean rank (the first in the ranking
computed during the Friedman test) which is taken as control.

The results of the post-hoc tests are shown in Tables 6, 7 and 8 for the
three scenarios considered. We show the ranking computed by the Friedman
test and the adjusted p-value using Holm’s procedure with a 5% significance
level. The win-tie-loss numbers (W T L) in row A are referred to the relative
results between the control algorithm and the one in row A. Boldfaced results
correspond to non-rejected hypotheses.

Table 6: Results of the post-hoc test for the mean accuracy using complete
rankings

method p-value rank win tie loss
LRT100 - 1.93 - - -
LRT25 1.0292e-01 345 19 2 0
F-LRT100 9.6939e-02 3.93 18 2 1
IBLR 9.6939e¢-02 393 10 1 10
W-LRT100  3.7376e-02 4.36 17 1 3
F-LRT25 5.3682e-04 555 20 1 0
W-LRT25 1.9635¢-04 581 19 0 2
LRT 6.7266e-09 7.64 21 0 0
F-LRT 6.1747e-14  9.19 21 0 0
W-LRT 5.6785e-14 921 21 0 0

Table 7: Results of the post-hoc test for the mean accuracy using rankings
with 30% missing labels

method p-value rank win tie loss
LRT100 - 1.50 -
F-LRT100 9.9492e-02 3.14 18

LRT25 9.9492e-02 333 21
W-LRT100  5.6346e-03 4.40 20
F-LRT25 4.2945e-04 512 20

OO O OO+~ OO O
O OO = UL = O W

IBLR 4.6265e-05 5.64 16
W-LRT25 3.4422e-05 574 20
LRT 1.4405e-10 776 21
W-LRT 5.2710e-15 9.05 21
F-LRT 5.7307e-16  9.31 21

In the light of these results we can conclude that:
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Table 8: Results of the post-hoc test for the mean accuracy coefficient using
rankings with 60% missing labels

method p-value rank win tie loss
LRT100 - 129 -
LRT25 1.4083e-01 2.95 21

F-LRT100 1.4083e-01 298 17
W-LRT100  5.6346e-03 4.19 20
F-LRT25 4.2945e-04 490 21
W-LRT25 9.4333e-06 5.74 21

[elen el eNeNel =l
O DD O DN OO O WO

IBLR 3.0271e-09 7.10 19
LRT 6.7721e-12 795 21
W-LRT 2.8084e-15 8.90 21
F-LRT 1.3525e-15  9.00 21

e LRT, W-LRT and F-LRT algorithms, taken as basis for our all propos-
als, are always ranked in the last positions. However, their performance
clearly improve when applying bagging. We also observe that, as ex-
pected, the use of bagging boosts the performance of the two weak
classifiers (W-LRT and F-LRT), given rise to faster ensembles.

e The algorithm LRT100 is ranked in the first position in the three sce-
narios and so taken as control for the post-hoc tests.

e In the complete case, the post-hoc analysis reveals that IBLR, LRT25
and F-LRT100 show no statistically significant difference with respect
to LRT100. These results confirm the good performance of IBLR in
the complete case, being competitive with the ensemble methods. Fur-
thermore, although LRT100 gets the first position in the ranking, two
more faster ensembles show no statistical difference with respect to it.

e In the incomplete-30 and the incomplete-60 cases the post-hoc anal-
ysis yields a similar result to the complete one, but now, IBLR is no
competitive anymore. This fact emphasizes how the ensemble-based
methods cope better with the uncertainty of the incomplete cases than

IBLR.

5.4.2 Tree size

In [1] the authors compare the tree size, measured as number of tree nodes,
between the tree learnt by LRT and the one obtained by standard classifica-
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tion” tree induction algorithm (J48 Weka implementation [43] of C4.5 [26])
for the same dataset. The authors report that the size of trees learnt by LRT
is similar or sometimes even smaller than the corresponding ones learnt by
J48.

Here we have compared the size of the trees learnt by the original LRT
algorithm and the one of the trees learnt by our two simpler proposals: W-
LRT and F-LRT. The results, normalized by the LRT tree size, are shown
for each dataset (and also on average) in Table 9. As can be observed, the
size of the trees obtained by F(W)-LRT is always between 0.7 and 1.5 times
the size of the tree obtained by LRT. In fact, if we look the average over
the 21 datasets, there is no difference between the size of the trees obtained
by the three algorithms (LRT, W-LRT and F-LRT). Therefore, the use of
less informed thresholds does not have a significant impact on the size of the
obtained trees. This result is important, as when using the bagging approach,
b trees must be simultaneously stored in memory.

Table 9: Mean tree size of W-LRT and F-LRT normalized by LRT tree size.

Complete rankings
method  aut  bod cal  cpu cle fri gla  hou ii  pen  seg  sto  veh vow win wis spo  hea  dtt col  dia| avg.
W-LRT 1174 0.958 0.896 0.89 0.936 0.971 0.968 0.795 123 094 1105 0912 1.05 094 1259 0.768 0.915 0951 0.959 0.966 0.938 | 0.977
F-LRT  0.999 0.926 0.962 0.913 0.953 0.733 0.916 1.011 1.321 0.905 124 0.962 0.989 0.949 1.334 0.985 0.825 0.894 1.028 1.029 1.04 | 0.996

Rankings with 30% missing labels

method _aut_bod _ cal _cpu__ ele  fi_ gla hou i pem  seg  sto veh vow win _ wis _ spo hea  dit _ col  dia| avg

W-LRT 128 0981 0002 0885 0941 1.033 101 0806 1296 0.962 1.15 0963 1117 0945 1331 0.771 091 0948 0961 0.956 0.943 | 1.004

F-LRT 1078 0959 0971 0916 0949 0.788 102 1012 1413 0.924 1291 1.013 1.088 0.956 1458 0976 0.825 0.89 1.025 1.021 1.039 | 1.029
Rankings with 60% missing labels

method _aut  bod  cal cpu  ele  fi gla hou i pen  seg  sto  veh vow win  wis  spo  hea  dtt  col  dia| avg

W-LRT 1.561 0.957 0.935 0.862 0.957 1.255 1.064 0.821 1.163 098 1.29 1.104 1256 096 1464 0.789 0.902 0.935 0.962 0.958 0.946 | 1.053
F-LRT  1.333 0.949 1.0 0932 0958 1.01 1.084 1.035 1.297 0.939 1444 1.156 1.192 097 1.379 0.939 0.823 0.884 1.019 1.017 1.042 | 1.067

5.4.3 Time

In this paper we deal with two different paradigms of machine learning,
instance-based and model-based, which unevenly distribute the time require-
ments between the learning and inference phases. Therefore, for the sake of
a fair CPU-time based comparison we consider the time used in the whole
process: learning from the training set and validating the test set. Table 10
shows the CPU time (seconds) required by IBLR, LRT, F-LRT and W-LRT
for carrying out a 5x10 cv over each dataset. Hence, the time needed to
learn and validate a single model is about 1/50 of the amount reported. As
can be observed, LRT is the most expensive algorithm in terms of CPU time,

"To obtain a standard classification problem, only the first label in the ranking is taken
as class label.
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needing 40% more time than IBLR on average, although they perform quite
similar when the number of instances grows. Regarding the two weak tree-
based classifiers, they run two orders of magnitude faster than the original
LRT algorithm. To obtain (roughly) the time needed by the bagging-based
versions of the tree-based algorithms, we can multiply the time shown in
Table 10 by the number of b bags considered.

Therefore, we can conclude that:

e Even though LRT-based bagging classifiers obtain very good accuracy,
they are not affordable in practice when the number of instances grows,
due to the required amount of CPU time.

e Bagging F-LRT and W-LRT with b € {50, 100} needs at most the same
CPU time than LRT and IBLR, in particular in the largest datasets
(cal, ele and fri).

e The combination of these observations with those obtained in Section
5.4.1 clearly points out to F-LRT as the algorithm with the best trade-
off accuracy-time, as it is always in the top group of algorithms accord-
ing to accuracy, but it is also much faster than the other algorithms in
such group (LRT100 and LRT50).

Table 10: Mean CPU time (s) used by the base algorithms

Complete rankings

method _aut__bod opu gl Tou  in pen seg  sto veh  vow  win__ wis spo hea  dit_ col dia

LR 416 095 5 260.13 070 520 1817 63652 2158 74l 772 673 821 857 3843 4099 3301 3561  30.80

LRT 2710 322 556.70 261 614 074 76015 30420 14.07 1227 3978 210 799 146043 74538 716.06 530.90 99236

W-LRT 486 0.10 6.05 014 025 009 2036 341 071 110 054 075 025 688 550 668 679 634

F-LRT 438 0.15 5.47 012 027 009 2604 380 159 113 046 126 036 586 505 501 525 558
Rankings with 307 missing labels

method __aut__bod al  opu ele gla Tou i pen seg  sto veh  vow  win__ wis Tea  dit ol dia

777 1000 802 67528 2081 12.08 1151 1340 1089 1249 3
355 681 075 1059.86 362.64 1297 1344 5334 320 1336 2442.06
069 026 008 3312 404 050 118 019 022
020 029 012 3197 483 050 124 016 050
Rankings with 60% missing labels
opu ele T gla hou i pen seg  sto veh  vow  win__ wis spo hea  dit__ col dia
2 27143 1300.15 724044 1148 1238 752 G0L03 2881 802 1863 1852 7.5 085 3163 3730 3188 3500  50.33
609.18 169178 9466.61 3.30 598 286 955.61 20543 1282 13.06 43.67 323 1021 2247.73 81831 9977 77834 11086
631 2022 5603 034 039 009 3061 37 051 L13 055 02 034 888 644 661 717
643 2691 5334 048 037 010 2863 407 049 109 056 035 067 706 583 567 612

IBLR 10.84 555 1638.48 265.08 1414.88
LRT 25.64  4.09 2098.66 627.69 5

W-LRT 476 0.14 14.13 7.14
F-LRT 420 019 12.53 6.80

31.60 3898 70.96
56.56  636.01 1197.88
6.89 7.18
5.53 6.11

method  aut  bod
IBLR 1518 11.69
LRT 19.58  4.85
W-LRT 43 019
F-LRT 3.55  0.38

5.4.4 Some comments on scalability

As a complement to the analysis of the CPU time required by the studied
algorithms, here we carry out the analysis of the theoretical complexity orders
reported in Section 4.1. As will be observed, the analysis is in line with the
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results shown in the previous section. Nevertheless, here we put emphasis on
the scalability to larger problems.

Regarding the tree-based models, LRT is linear in the number of predic-
tive attributes and sub-cubic (N2log(N)) regarding the number of instances.
On the other hand the two weak learners, W-LRT and F-LRT, are sub-
quadratic (Nlog(N)) in the number of instances. Therefore, both algorithms
show a good scalability behaviour when the number of predictive attributes
grows (high dimensionality) but LRT is poorly scalable when the number of
instances grows significantly (large samples). Actually, as aforementioned,
the weak learners are (in theory) N times faster than LRT.

With respect to the ensembles, the complexity of the learning step in-
creases proportionally to the number of bags b. Therefore, the same com-
ments as for the base algorithms apply to the ensemble case. However, in
favour of bagging it must be pointed out that a coarse-grain parallel im-
plementation for the ensemble can be easily produced, so dividing the time
required by the number of available nodes/cores. Furthermore, it is also of
interest to observe that as usually b << N, the ensemble of weak learners can
be learnt even faster than a single LRT. This is of course a valuable feature
in favour of bagging F-LRT when facing large sample problems, specially if
we also take into account that it obtains more accurate models.

Finally, if we focus on IBLR, the first thing we must notice is that even
being a lazy learner, it actually performs a learning stage in the way of
model /parameter selection. In fact, one of the key points of its good accu-
racy is the selection of the number of neighbours to be used for each dataset.
Thus, by assuming that distances computation dominates consensus compu-
tation, a lower bound for the learning step complexity is O(N?n), that is,
quite similar to LRT. However, while LRT requires O(log(V)) for predic-
tion, IBLR needs O(Nn). Although this is a known fact for lazy learners,
it represents a clear disadvantage, because models are learnt from data only
once but queried many times. Therefore, in the large sample case, and tak-
ing into account the learning time complexity, the preference order among
the compared algorithms becomes Bagging(W/F-LRT) > IBLR = LRT >
Bagging(LRT). Nonetheless, if we also take into account the complexity of
doing inference over a large number of instances, then IBLR may be the least
preferred algorithm.
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6 Conclusions

In this paper we deal with the label ranking problem. Inspired by the decision
tree algorithm (LRT) proposed in [1], we design two weak classifiers which
can be learnt more efficiently.

From the experimental study we can conclude that bagging the weak
learner using unsupervised frequency-based discretization to select the split
point (F-LRT), is competitive with the ensemble of LRT in terms of accuracy.
Actually, bagging F-LRT is also competitive in accuracy to the state-of-the-
art IBLR algorithm.

We have also studied the problem of dealing with partial information. In
this scenario our proposal significantly outperform IBLR algorithm, being
the difference bigger as the number of missing labels grows.

As future research we plan to use different techniques to build the ensem-
ble, e.g. boosting and/or stacking. Furthermore, we also plan to use simpler
unstable classifiers as base models, as could be the case of NB-like hybrid
probabilistic classifiers.
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