7,494 research outputs found

    Error Correction for Dense Semantic Image Labeling

    Full text link
    Pixelwise semantic image labeling is an important, yet challenging, task with many applications. Typical approaches to tackle this problem involve either the training of deep networks on vast amounts of images to directly infer the labels or the use of probabilistic graphical models to jointly model the dependencies of the input (i.e. images) and output (i.e. labels). Yet, the former approaches do not capture the structure of the output labels, which is crucial for the performance of dense labeling, and the latter rely on carefully hand-designed priors that require costly parameter tuning via optimization techniques, which in turn leads to long inference times. To alleviate these restrictions, we explore how to arrive at dense semantic pixel labels given both the input image and an initial estimate of the output labels. We propose a parallel architecture that: 1) exploits the context information through a LabelPropagation network to propagate correct labels from nearby pixels to improve the object boundaries, 2) uses a LabelReplacement network to directly replace possibly erroneous, initial labels with new ones, and 3) combines the different intermediate results via a Fusion network to obtain the final per-pixel label. We experimentally validate our approach on two different datasets for the semantic segmentation and face parsing tasks respectively, where we show improvements over the state-of-the-art. We also provide both a quantitative and qualitative analysis of the generated results

    Panoptic Segmentation

    Full text link
    We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation.Comment: accepted to CVPR 201

    Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs

    Get PDF
    In this work we propose a structured prediction technique that combines the virtues of Gaussian Conditional Random Fields (G-CRF) with Deep Learning: (a) our structured prediction task has a unique global optimum that is obtained exactly from the solution of a linear system (b) the gradients of our model parameters are analytically computed using closed form expressions, in contrast to the memory-demanding contemporary deep structured prediction approaches that rely on back-propagation-through-time, (c) our pairwise terms do not have to be simple hand-crafted expressions, as in the line of works building on the DenseCRF, but can rather be `discovered' from data through deep architectures, and (d) out system can trained in an end-to-end manner. Building on standard tools from numerical analysis we develop very efficient algorithms for inference and learning, as well as a customized technique adapted to the semantic segmentation task. This efficiency allows us to explore more sophisticated architectures for structured prediction in deep learning: we introduce multi-resolution architectures to couple information across scales in a joint optimization framework, yielding systematic improvements. We demonstrate the utility of our approach on the challenging VOC PASCAL 2012 image segmentation benchmark, showing substantial improvements over strong baselines. We make all of our code and experiments available at {https://github.com/siddharthachandra/gcrf}Comment: Our code is available at https://github.com/siddharthachandra/gcr
    • …
    corecore