5,756 research outputs found

    CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog Evaluation

    Full text link
    Practical dialog systems need to deal with various knowledge sources, noisy user expressions, and the shortage of annotated data. To better solve the above problems, we propose CGoDial, new challenging and comprehensive Chinese benchmark for multi-domain Goal-oriented Dialog evaluation. It contains 96,763 dialog sessions and 574,949 dialog turns totally, covering three datasets with different knowledge sources: 1) a slot-based dialog (SBD) dataset with table-formed knowledge, 2) a flow-based dialog (FBD) dataset with tree-formed knowledge, and a retrieval-based dialog (RBD) dataset with candidate-formed knowledge. To bridge the gap between academic benchmarks and spoken dialog scenarios, we either collect data from real conversations or add spoken features to existing datasets via crowd-sourcing. The proposed experimental settings include the combinations of training with either the entire training set or a few-shot training set, and testing with either the standard test set or a hard test subset, which can assess model capabilities in terms of general prediction, fast adaptability and reliable robustness.Comment: EMNLP 202

    Spectrum Refarming in Sri Lanka: Lessons for Policy Makers and Regulators

    Get PDF
    The commercial potential of wireless applications has brought spectrum policies to the forefront of regulatory arena. In the context of rapidly increasing demands on spectrum, regulators have to adopt refarming so as to be able to provide spectrum for new services. A variety of models have been chosen by different countries. This paper documents the approach and process adopted by Telecom Regulatory Commission, Sri Lanka (TRCSL) for refarming of spectrum and draws lessons for policy makers and regulators. Sri Lanka was among the early countries in Asia not only to introduce telecom reforms, but also commercial wireless services (mobile and WLL). It may appear that TRCSL’s quick introduction of wireless services gave a head start to Sri Lanka, but the earlier ad-hoc processes led to a situation where spectrum refarming had to be done very quickly subsequently, imposing additional costs on operators and regulators. While realignment was triggered by the need for mobile operators to adopt standard technology, this opportunity could have been strategically used by TRCSL to review spectrum allocations across all the bands, thus allowing faster deployment of digital services. The open consultation process adopted by TRCSL had reduced the risk of “regulatory capture” and it was able to leverage the refarming initiative to bring equity in quantum of spectrum allocated between incumbent and new operators. The study highlights that for rapid proliferation of wireless technologies, a forward looking approach is required not only for managing spectrum but also removal of restrictions on handsets, whose price is a critical aspect for penetration in a developing country context.

    Designing Human-Centered Collective Intelligence

    Get PDF
    Human-Centered Collective Intelligence (HCCI) is an emergent research area that seeks to bring together major research areas like machine learning, statistical modeling, information retrieval, market research, and software engineering to address challenges pertaining to deriving intelligent insights and solutions through the collaboration of several intelligent sensors, devices and data sources. An archetypal contextual CI scenario might be concerned with deriving affect-driven intelligence through multimodal emotion detection sources in a bid to determine the likability of one movie trailer over another. On the other hand, the key tenets to designing robust and evolutionary software and infrastructure architecture models to address cross-cutting quality concerns is of keen interest in the “Cloud” age of today. Some of the key quality concerns of interest in CI scenarios span the gamut of security and privacy, scalability, performance, fault-tolerance, and reliability. I present recent advances in CI system design with a focus on highlighting optimal solutions for the aforementioned cross-cutting concerns. I also describe a number of design challenges and a framework that I have determined to be critical to designing CI systems. With inspiration from machine learning, computational advertising, ubiquitous computing, and sociable robotics, this literature incorporates theories and concepts from various viewpoints to empower the collective intelligence engine, ZOEI, to discover affective state and emotional intent across multiple mediums. The discerned affective state is used in recommender systems among others to support content personalization. I dive into the design of optimal architectures that allow humans and intelligent systems to work collectively to solve complex problems. I present an evaluation of various studies that leverage the ZOEI framework to design collective intelligence

    An artificial intelligence-based collaboration approach in industrial IoT manufacturing : key concepts, architectural extensions and potential applications

    Get PDF
    The digitization of manufacturing industry has led to leaner and more efficient production, under the Industry 4.0 concept. Nowadays, datasets collected from shop floor assets and information technology (IT) systems are used in data-driven analytics efforts to support more informed business intelligence decisions. However, these results are currently only used in isolated and dispersed parts of the production process. At the same time, full integration of artificial intelligence (AI) in all parts of manufacturing systems is currently lacking. In this context, the goal of this manuscript is to present a more holistic integration of AI by promoting collaboration. To this end, collaboration is understood as a multi-dimensional conceptual term that covers all important enablers for AI adoption in manufacturing contexts and is promoted in terms of business intelligence optimization, human-in-the-loop and secure federation across manufacturing sites. To address these challenges, the proposed architectural approach builds on three technical pillars: (1) components that extend the functionality of the existing layers in the Reference Architectural Model for Industry 4.0; (2) definition of new layers for collaboration by means of human-in-the-loop and federation; (3) security concerns with AI-powered mechanisms. In addition, system implementation aspects are discussed and potential applications in industrial environments, as well as business impacts, are presented
    • …
    corecore