4,217 research outputs found

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Testing in learning conjunctive invariants

    Get PDF
    We show a new approach in learning conjunctive invariants using dynamic testing of the program. Coming up with correct set of loop invariant is the most challenging part of any verification methods. Although new methods tend to generate a large number of possible invariants hoping this set contains all required invariants needed to verify the program, this large number will cause a significant delay in verification which often ends up to a time out. Our approach introduce a new method in which we can solve this problem by reducing the number of generated candidate invariants. We apply our method in a verification engine that uses natural proofs for heap verification. We implement our method by running tests for linked list data structures and evaluate it by comparing the results to the original approach without testing. We also use an existing GPU verification tool, called GPUVerify, and apply our method to it. Finally, we show that our approach can significantly improve the verification time and in some cases prove programs that were initially timed out

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Learning to Verify the Heap

    Get PDF
    Abstract. We present a data-driven verification framework to automatically prove memory safety and functional correctness of heap programs. For this, we introduce a novel statistical machine learning technique that maps observed program states to (possibly disjunctive) separation logic formulas describing the invariant shape of (possibly nested) data structures at relevant program locations. We then attempt to verify these predictions using a theorem prover, where counterexamples to a predicted invariant are used as additional input to the shape predictor in a refinement loop. After obtaining valid shape invariants, we use a second learning algorithm to strengthen them with data invariants, again employing a refinement loop using the underlying theorem prover. We have implemented our techniques in Cricket, an extension of the GRASShopper verification tool. Cricket is able to automatically prove memory safety and correctness of implementations of a variety of classical heap-manipulating programs such as insertionsort, quicksort and traversals of nested data structures

    Abstract Learning Frameworks for Synthesis

    Full text link
    We develop abstract learning frameworks (ALFs) for synthesis that embody the principles of CEGIS (counter-example based inductive synthesis) strategies that have become widely applicable in recent years. Our framework defines a general abstract framework of iterative learning, based on a hypothesis space that captures the synthesized objects, a sample space that forms the space on which induction is performed, and a concept space that abstractly defines the semantics of the learning process. We show that a variety of synthesis algorithms in current literature can be embedded in this general framework. While studying these embeddings, we also generalize some of the synthesis problems these instances are of, resulting in new ways of looking at synthesis problems using learning. We also investigate convergence issues for the general framework, and exhibit three recipes for convergence in finite time. The first two recipes generalize current techniques for convergence used by existing synthesis engines. The third technique is a more involved technique of which we know of no existing instantiation, and we instantiate it to concrete synthesis problems
    • …
    corecore