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ABSTRACT

We show a new approach in learning conjunctive invariants using dynamic

testing of the program. Coming up with correct set of loop invariant is the

most challenging part of any verification methods. Although new methods

tend to generate a large number of possible invariants hoping this set contains

all required invariants needed to verify the program, this large number will

cause a significant delay in verification which often ends up to a time out.

Our approach introduce a new method in which we can solve this problem

by reducing the number of generated candidate invariants.

We apply our method in a verification engine that uses natural proofs for

heap verification. We implement our method by running tests for linked

list data structures and evaluate it by comparing the results to the original

approach without testing. We also use an existing GPU verification tool,

called GPUVerify[1], and apply our method to it. Finally, we show that our

approach can significantly improve the verification time and in some cases

prove programs that were initially timed out.
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CHAPTER 1

INTRODUCTION

Generating loop invariants is the most difficult and crucial task in verifying

a program[2, 3, 4, 5, 6]. While there are many approaches to produce the

sufficient loop invariant, many of them are not showing significant results.

Learning is an approach in which a learner is used to come up with an

invariant by having a teacher which tests the nominated invariant by the

learner and gives feedback to learner[7, 8]. A learner can possibly generate

any kind of loop invariant. However, a conjunctive invariant is much simpler

to learn and generate. A learner which generates only invariants which are

conjunctive of the basic predicates is called a conjunctive invariant learner.

A conjunctive invariant learner needs candidate invariants to learn the

proper set of invariant for verifying the program. Since invariants can be very

complicated and could possibly look very different, the number of candidate

invariants needed to prove the program correct could be notable[9], and this

number can always grow exponentially by the complexity of the program.

For example, increasing the number of local variables inside the program can

dramatically expand the number of candidate invariant.

Houdini[10] is an example of a conjunctive invariant learner. The problem

with Houdini[10] other than that it will just learns conjunctive invariants,

and it might not be sufficient as a loop invariant is that it takes considerable

amount of time to remove a predicate, and when the number of predicates

goes up it is not scalable. Therefore, it is typical to see a correct program

to take a great amount of time to be verified or it times out and never get

verified in the specified time[11].

Because of the fact that, when a conjunctive invariant is a loop invariant,

all of the predicates that it includes, are also true in any configuration of

the program, we know that a predicate which is false in at least one program

configuration can never be a part of the conjunctive loop invariant. Therefore,

we can use this fact to eliminate those predicates by testing. If we run the
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Figure 1.1: Two Different Approach. Green shows testing and blue shows
without testing.

program, and evaluate each predicates where the loop invariant should be

true, and the predicate is false, we can eliminate that predicate before feeding

it to Houdini[10].

In our approach first we generate all the possible loop invariant candidates

by using a template, and the number and type of variables inside the program.

To prove the program correct first we simply feed all the candidate invariants

to the conjunctive invariant learner and then try to prove it correct. All these

candidate invariants are translated to Boogie[12] programming language for

verification. On the second approach before we feed them to leaner we prune

them by testing.

To prune candidate invariants by testing first we implemented the program

and ran it by some random sample tests. The implemented program is mod-

ified to evaluate the candidate invariants. Since we are learning conjunctive

invariants, we call these candidate invariants predicates. If a predicate is

evaluated false in this process it will not be fed to learner for verification.

Figure 1.1 shows both original and our improved approach. The blue lines

describe the basic way in which all the candidate invariants are passed to the

leaner, while the green color highlights our new approach of using testing to

prune the predicates.

Testing the predicates can significantly reduce the number of predicates
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and it makes the Houdini[10] more scalable for larger number of predicates.

GPUVerify[1] is a tool for verifying race and divergence freedom of OpenCL

and CUDA programming languages. The main difference between these pro-

grams and what we have discussed so far is that they are parallel program-

ming languages. In other words, a GPU program is run by all GPU kernels

at the same time, and this make them more difficult to analyze in terms of

soundness of the pruning approach.

In the chapter 2 we explain how we inject the program with our evaluate

function and we prove why this technique is sound. Chapter 3 shows an

example of a program before and after injecting the evaluate function, and

describes how the details are handled so there is no room for pruning a pred-

icate by mistake. Set of template predicates and the way we came up with

them are discussed in chapter 4. We talk about the detail implementations

of our work in chapter 5 and we evaluate our approach in chapter 6. Future

and related work are respectively discussed in chapters 7 and 8.
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CHAPTER 2

APPROACH

In order to reduce the number of predicates, we tested the programs with

a small set of inputs. We took the original program and injected it with a

evaluate function which gets the state of the program (variables), and checks

the validity of the predicates. Figure 2.1 shows where we injected the evaluate

function calls.

S1;

evaluate(params);

while (b) {

S2;

evaluate(params);

}

S3;

Figure 2.1: Injected evaluate function calls.

Loop invariants always hold immediately before the loop, and after each

iteration of the loop. Therefore, if the loop invariant is a conjunction between

the predicates p1, p2, ..., pn, these predicates should be true, when we are

calling the evaluate function. The evaluate function removes any predicates

which have been evaluated to false.

S1 , S2 , and S3 are a set of a statements. S2 should be a basic block

while S1 and S3 are not required to be a basic block. A basic block is a

block of statements which has only one entry point and one exit point, and

when you execute first statement you will execute all statements. S2 being

a basic block is enough for our approach to be correct. However, if there is a

inner loop inside S2 , our approach will still be sound. To be precise the only

way that S2 not being a basic block can make our approach unsound would

be when there is an entry point inside S2 from either S1 or S2 , which

is highly improbable in modern programming. Therefore, it will be easy to
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make this injection to code automated without considering the branching

and paths in the code.

params as arguments of evaluate includes all the predicates passed by

reference which might be modified by evaluate . params also include all

the local variables and arguments of the program which are used to generate

the predicates.

Our approach for pruning GPU programs at core is the same as sequential

programs. GPUVerify[1] takes a parallel program as an input, but turns it

into a sequential program and then tries to prove the verification conditions.

This makes it more interesting and at the same time more challenging with

our approach, and the reason is we do not have the same program at the

testing and proving stages. Thus, we cannot just use the same invariants.

Although a parallel programs at the testing stage becomes a sequential one

at the verification time, the way GPUVerify[1] is designed makes it easy for us

to translate the invarinats of the sequential program to their representation

at the parallel stage. Moreover, this translation is sound if and only if when

the parallel representation is false we can say the invariant of the sequential

program is also false.

GPUVerify[1] translates a parallel pragram into a sequential one by dupli-

cating all the variables and randomizing the value of a variable whenever a

write happens. This means the sequential program is the cross product of

only two threads running in parallel and the variable havoc represents the

effect of other threads.

The sequential program includes all the states that a single-thread run

of the parallel program can have. If we have an invariant in the sequential

program consisting of variables only from one thread of the parallel program,

then if we have a single-thread run of the parallel program showing the

invariant is false, it means the invariant in the sequential programs would

also be false. That’s the key of our approach with GPUVerify programs.

Figures 2.2 and 2.3 show a simple program in parallel and sequential stage.

Our approach for GPUVerify is to generate the invariants for sequential

programs at the parallel level then run the program with a simple test and

see which invariants are being falsified. For simplicity, we just use one type

of GPUVerify invariants to test.
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_kernel void foo(_local int* A, int idx) {

int x;

int y;

x = A[tid + idx];

y = A[tid];

A[tid] = x + y;

}

Figure 2.2: Parallel GPU Program

//requires 0 <= tid$1 && tid$1 < N

//requires 0 <= tid$2 && tid$2 < N

//requires tid$1 != tid$2

//requires idx$1 != idx$2

void foo(int idx$1, int idx$2) {

int x$1; int x$2;

int y$1; int y$2;

LOG_READ_A(tid$1 + idx$1);

CHECK_READ_A(tid$2 + idx$2);

havoc(x$1); havoc(x$2);

LOG_READ_A(tid$1);

CHECK_READ_A(tid$2);

havoc(y$1); havoc(y$2);

LOG_WRITE_A(tid$1)

CHECK_WRITE_A(tid$2)

}

Figure 2.3: Sequential Program
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CHAPTER 3

EXAMPLE

Figure 3.1 is an initial program without any modification. This specific

program gets a Node* h as a head of list and an int k , removes k from

the list if it exists. This program and so many of other programs use only

two types of variables Node* and int .

Figure 3.2 shows the same SLL delete program after we added the evalu-

ate function. We added a boolean vector of predicates which are passed by

reference to the SLL delete function. This vector is initially true for all

predicates but each time evaluate is called its values might get changed.

Since all the variables are either Node* or int , evaluate takes two vec-

tors of types int and Node* which represent the value of all variable in

the function.

In the Figure 3.3 evaluate function modifies the value of each predicates

in a way that if it changes to false once, it will remain false forever.

Therefore, we capture the essence of the invariant which should be true in

all possible situation.

Another important observation is that we preserved everything from the

start of the SLL delete to the beginning of the while , but we just simply

removed everything after while , because we do not care about what hap-

pens afterwards. All we care is to get the state of program when we reach

the while and in each iteration of while . Persevering everything before

while is important because we need to know the initial value of variables

before the first iteration. For example, in this program if i == NULL , we

never reach the while, and we should keep it this way.

One important observation in Figure 3.2 is that we added a new variable

Node * P h . The reason behind this is that we need the old value of pointers

in our invariant candidates. Some invariant candidates use both old value

and new value of a pointer. That’s why both index 0 and 1 of the ptrs

are storing Node * h , but respectively old and new value. We added a
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Node * SLL_delete(Node * h, int k)

Node * i = h;

Node * j = NULL;

Node * t = NULL;

if (i == NULL) {

return h;

}

while(i != NULL && t == NULL)

{

if (i->key == k) {

t = i;

} else {

j = i;

i = i->next;

}

}

if (i != NULL) {

if (j == NULL){

h = i->next;

free(i);

} else {

t = i->next;

free(i);

j->next = t;

}

}

return h;

}

Figure 3.1: Program Before Adding Evaluate Function Calls
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void SLL_delete(vector<bool> &pred, Node* h, int k){

Node * P_h = h;

Node * i = h;

Node * j = NULL;

Node * t = NULL;

vector<Node*> ptrs; ptrs.resize(5);

vector<int> ints; ints.resize(1);

if (i == NULL) {

return;

}

ptrs[0] = P_h; ptrs[1] = h; ptrs[2] = i;

ptrs[3] = j; ptrs[4] = t; ints[0] = k;

evaluate(pred, ptrs, ints);

while (i != NULL && t == NULL) {

if (i->key == k) {

t = i;

}

else {

j = i;

i = i->next;

}

ptrs[0] = P_h; ptrs[1] = h; ptrs[2] = i;

ptrs[3] = j; ptrs[4] = t; ints[0] = k;

evaluate(pred, ptrs, ints);

}

}

Figure 3.2: Injected Code Around Loop to Evaluate the Predicates

void evaluate(vector<bool> &pred, vector<Node *> ptrs,

vector<int> ints){

Node * Plist = ptrs[0];

Node * locallist = ptrs[1];

pred[0] = pred[0] && sll(Plist);

pred[1] = pred[1] && sll(locallist);

}

Figure 3.3: Evaluate Function
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_kernel void scan_inter2_kernel(_global unsigned int* data,

unsigned int iter)

{

_requires(iter == 1);

unsigned int stride = get_local_size(0)*2;

for (unsigned int d = 1; d <= get_local_size(0); d *= 2) {

stride >>= 1;

barrier(CLK_LOCAL_MEM_FENCE );

if (thid < d) {

unsigned int i = 2*stride*thid;

unsigned int ai = i + stride - 1;

unsigned int bi = ai + stride;

ai += CONFLICT_FREE_OFFSET(ai);

bi += CONFLICT_FREE_OFFSET(bi);

unsigned int t = s_data[ai];

s_data[ai] = s_data[bi];

s_data[bi] += t;

}

}

barrier(CLK_LOCAL_MEM_FENCE );

data[g_ai] = s_data[s_ai];

data[g_bi] = s_data[s_bi];

}

Figure 3.4: GPU Kernel

new pointer variable for each pointer variable that is passed as argument

to the program. This itself shows why increasing the number of variables

can drastically increase the number of predicates. However, because we use

testing here it would not be much effective.

Figure 3.4 shows a simplified GPU kernel code in OpenCL language. We

added the evaluate function similarly here before the loop and at the end

of all loop statements.
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CHAPTER 4

PREDICATES

Our approach for coming up with the conjunctive loop invariant is simple.

First, we generate so many predicates then we test them to remove the false

ones, and finally we feed them to a learner (here Houdini[10]) to come up

with the loop invariant.

Choosing what should be as the basic predicates were done by looking

at the examples and finding those predicates which are common and then

generalizing them. We call these generalized new predicates, template pred-

icates. In order to avoid the increasing number of predicates, we chose to

have three phases which each new phase adds new predicates templates, and

if the program fails in one phase, we expand the number of templates and

go to next phase till the program verification succeeds. Figure 4.2 shows the

different predicate templates we used for each phase.

Figure 4.1 shows the procedure in which candidate invariants for each

phase are added to the program in order to increase the chance of verifi-

cation success and also reduce the time of verification. The complexity and

number of templates in each phase increases, so moving forward to next phase

will significantly add the number of predicates. However, because all these

predicates can be pruned using testing, we can still add more complicated

predicated and not be worried about time out. If we succeed to verify the

program in each phase we halt the procedure.

We can also apply this three phase approach to any other type of programs

not just linked lists. We also can add more phases if we are dealing with

more complicated data structures. Generally, the idea of using more than

one phase can help the process of verification in both time and simplicity.

All the templates are used with the program variables(local variables, argu-

ments, our defined variables for old value) to generate all possible predicates.

It is obvious here why if we add a new variable the number of predicates will

expand dramatically. For example if a template uses two distinct variables
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Figure 4.1: Three Phase Predicate Generation

and we have 3 such variables in our program the number of predicates gen-

erated by this templates would be
(
3
2

)
= 3. However, if we add one more

variable of such type to the program, the number would be
(
4
2

)
= 6. This

itself again shows the important of pruning while using the template method

in loop invariant inference.

GPUVerify[1] has its own predicate generation. The only predicate type we

focused was the power two type. Figure 4.3 describes this invariant template

and when they are being generated. If we apply the described rule on the

kernel we showed in figure 3.4, we will get the candidate invariants in the

figure 4.4.
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x, y, x1, x2 ∈ PointerV ars
~x, ~y, ~z ∈ PointerV ars∗

i, j ∈ IntegerV ars ∪ {0, IntMax, IntMin}
pf ∈ PointerF ields
key, df ∈ DataFields

list(~x) := LinkedList(x1) | DoublyLinkedList(x1) | SortedLinkedList(x1)
| LinkedListSeg(x1, x2) | DoublyLinkedListSeg(x1, x2)
| SortedLinkedListSeg(x1, x2)

Phase 1

list(~x) x = nil x = y
x ∈ list heaplet(~y) x 6= nil x 6= y
x /∈ list heaplet(~y) x.pf = nil x.pf = y
list heaplet(~x) ∩ list heaplet(~y) = ∅ x.pf 6= nil x.pf 6= y

Phase 2

x.df ≤ y.df x.df ≤ i
x.df ≥ y.df x.df ≥ i
x.df = y.df x.df = i
x.df 6= y.df x.df 6= i
i ∈ list key set(~x) i /∈ list key set(~x)
list key set(~x) = list key set(~y)
list key set(~x) = list key set(~y) ∪ list key set(~z)

Phase 3

size(~x) = i size(~x) ≥ i
size(~x) = i− j size(~x) ≤ i
size(~x)− size(~y) = i size(~x)− size(~y) = i− j
list key set(~x) ≤set {i} list key set(~x) ≥set {i}
list key set(~x) ≤set {y.df} list key set(~x) ≥set {y.df}
list key set(~x) ≤set list key set(~y)
list key set(~x) ≥set shape key set(~y)

Figure 4.2: Templates for predicates. The operator ≤set denotes comparison
between integer sets, where A ≤set B if and only if ∀x ∈ A.∀y ∈ B. x ≤ y.
The operator ≥set is also similarly defined.

Conditions : i = i ∗ 2 or i = i/2 occurs in the loop
i is live at the loop head
D is the smallest power of 2 with D ≤ SZ

GeneratedCandidates : i&(i− 1) = 0, i 6= 0, i < 1, i < 2, i < 4, ..., i < D

Figure 4.3: GPUVerify Power Two Invariant Generation Rule
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stride == 0 || (stride & (stride - 1) == 0

stride != 0

d == 0 || (d & (d - 1)) == 0

d != 0

(stride == 0 && d == 2) || stride * d = 1

(stride == 0 && d == 4) || stride * d = 2

(stride == 0 && d == 8) || stride * d = 4

(stride == 0 && d == 16) || stride * d = 8

(stride == 0 && d == 32) || stride * d = 16

(stride == 0 && d == 64) || stride * d = 32

(stride == 0 && d == 128) || stride * d = 64

(stride == 0 && d == 256) || stride * d = 128

(stride == 0 && d == 512) || stride * d = 256

(stride == 0 && d == 1024) || stride * d = 512

(stride == 0 && d == 2048) || stride * d = 1024

(stride == 0 && d == 4096) || stride * d = 2048

(stride == 0 && d == 8192) || stride * d = 4096

(stride == 0 && d == 16384) || stride * d = 8192

(stride == 0 && d == 32768) || stride * d = 16384

Figure 4.4: GPU Kernel Power Two Candidate Invariants
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CHAPTER 5

IMPLEMENTATION

In this chapter we talk about the detail implementation, and discuss how we

ran and executed the tests and knocked off the predicated before feeding it

to Houdini[10].

The process of testing consists of two phases. In the first phase we generate

a specific header file including the evaluate function that has all the generated

predicates. This header file other than evaluate function which was shown in

Figure 3.3, has another method called print pred that prints the surviving

predicates after pruning (Figure 5.1). For simplicity, when we generate the

predicates we generated the Boogie[12] version of them too, and at the end

we simply print out the the Boogie[12] version so it can be used directly in

verification.

The whole first phase is done automatically. A JavaScript code permutes

all the possible predicate patterns (Figure 4.2) by having the name and num-

ber of variables of each type ( Node* and int ), and generates this header

file.

In the second phase, we run the injected program with evaluate function

calls (Figure 3.2). Whenever the evaluate function gets called the value of

predicates will be updated, and at the end the corresponding Boogie[12]

version of invariants will be printed out.

Some of programs had unimplemented functions, but these functions did

not have any pre- or post-conditions, so we safely replaced them with some

simple functions. For example, filter function calls to remove function

which decides that if this Node i should be removed or not. We replaced

this call with i->key % 2 == 0 (Figure 5.2).

We ran each program with at most 5 different inputs, and compiled the

surviving predicates. Our input set consists of singly linked lists (sll) with

maximum length of 5. We gave each program a separated set of input to

make sure this input satisfies the precondition of the program. Figure 5.3
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void print_pred(vector<bool> pred) {

vector<string> cpp_pred;

cpp_pred.push_back(

string("F#sll($s,$phys_ptr_cast(P#list,^s_node))"));

cpp_pred.push_back(

string("F#sll($s,$phys_ptr_cast(local.list,^s_node))"));

for (int it = 0; it<pred.size(); it++)

if (pred[it]) {

cout << "\n" << cpp_pred[it];

}

}

Figure 5.1: Print Surviving Predicates After Pruning in Boogie Language

while (i != NULL) {

if (i->key % 2 == 0) { //to_remove(i)

Node * nxt = i->next;

j->next = nxt;

} else {

j = i;

}

i = i->next;

ptrs[0] = h; ptrs[1] = i; ptrs[2] = j;

evaluate(pred, ptrs, ints);

}

Figure 5.2: An Example of Unimplemented Function
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//input 1

int k1 = 3;

int myints1[] = { 1, 2, 3, 4, 5 };

vector<int> keys1(myints1, myints1 + sizeof(myints1) /

sizeof(int));

Node * list1 = gen_sll(keys1);

SLL_delete(pred, list1, k1);

//input 2

int k2 = 1;

int myints2[] = { 1 };

vector<int> keys2(myints2, myints2 + sizeof(myints2) /

sizeof(int));

Node * list2 = gen_sll(keys2);

SLL_delete(pred, list2, k2);

//input 3

int k3 = 1;

int myints3[] = { 4 };

vector<int> keys3(myints3, myints3 + sizeof(myints3) /

sizeof(int));

Node * list3 = gen_sll(keys3);

SLL_delete(pred, list3, k3);

Figure 5.3: Random Inputs for Each Program

shows how we run the program with different inputs. These inputs are chosen

randomly from a predefined set that we constructed to achieve corner cases

like empty list, single item list, and list with more than one item.

To evaluate template predicates, we needed to implement the list of func-

tion in Figure 5.4 for singly-linked list (sll).

In order to check that a pointer is indeed a singly linked list and not a

cycle, when the sll(x) is being evaluated, we keep track of every node by

collecting them in a set. The concept of set here has a small difference. Here

sll sll reach sll keys sll len
sll lseg sll lseg reach sll lseg len sll lseg keys
intset le intset lt intset subset oset in
oset disjoint oset union oset singleton intset in
intset disjoint intset union intset singleton

Figure 5.4: Singly Linked List Functions
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a set can be Undefined. The undefined concept is used when a pointer is

not actually a list or a list segment, and in this case no matter what the

variable is pointing to we consider it Undefined. To complete the defini-

tion, our Boolean type other than True and False has an extra constant

which is also called Undefined . Any function on an Undefined set returns

Undefined , and any Boolean operation which has an Undefined operand

will return Undefined . The concept of Undefined will help us not to worry

about what actually are pointers pointing to and easily evaluate the pred-

icates by just calling sll functions. We used operator overloading to easily

use operator on our new types with Undefined value (Figure 3.3).

GPUVerify[1] benchmark kernels that we used for testing do not need more

than some int inputs to be provided, so the tests for them is completely

randomized and we just use random integers which satisfy the precondition

of the loop. Therefore, we know for sure that we are going to execute the

loop at least once.
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CHAPTER 6

EVALUATION

We evaluated our approach with 27 different routines that manipulate linked

lists. These programs are from GNU C library, and benchmarks used to

evaluate separation logic based tools[13, 14].

We focused on linear data structure as a base because it is much simpler

to implement and test and at the same time are one of the most significant

unbounded data structures used in computer science[15].

Catagory Method
#pred NP + INV + Testing No Testing

before after verified Phase #conj Time(s) Time(s)

glib/gslist.c
Singly-

Linkedlist

g slist index 291 89 Yes 3 64 14 173
g slist insert before 265 47 Yes 1 44 4 45

g slist insert 140 34 Yes 1 19 5 13
g slist length 66 19 Yes 3 12 7 24

g slist nth data 414 115 Yes 3 73 21 276
g slist nth 108 31 Yes 3 17 6 46

g slist remove all 452 71 No 3 – TO TO
g slist remove link 605 117 Yes 2 76 10 121

g slist remove 140 35 Yes 1 27 2 9
g slist sort merge 2051 377 No 3 – TO TO

GRASS-
hopper
Singly-

LinkedList

sl concat 63 20 Yes 1 15 1 2
sl dispose 22 6 Yes 1 4 1 1
sl filter 140 22 Yes 1 8 5 13
sl insert 63 13 Yes 1 9 1 3

sl reverse 63 8 Yes 1 4 1 4
sl traverse 22 7 Yes 1 4 1 1

GRASS-
hopper

Sorted List

sls double all 140 37 Yes 1 37 2 TO
sls insert 117 24 Yes 2 24 18 457

sls pairwise sum 450 91 Yes 1 91 2 TO
sls split 63 12 Yes 1 11 22 45

AFWP
Singly-

Linked and
Doubly-

LinkedList

SLL-create 5 3 Yes 1 1 1 1
SLL-delete-all 22 3 Yes 1 2 1 1

SLL-delete 265 47 Yes 1 44 2 20
SLL-find 140 49 Yes 1 37 2 5

SLL-insert 63 10 Yes 1 9 3 2
SLL-last 63 11 Yes 1 8 1 3

SLL-reverse 63 8 Yes 1 4 1 3

Table 6.1: Linked List Evaluation Results
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Table 6.1 shows the results of using pruning with testing. Testing reduces

the initial number of predicates up to between 2 to 8 times. This much speed

up can make Houdini[10] more scalable. As you can see without testing total

time are much larger. Total time with testing was up to 25 times shorter

than without testing. Moreover, two programs that were timing out before,

got verified with testing. This shows testing can actually make Houdini[10]

more scalable when the number of predicates increases.

For GPUVerify[5], We used their benchmark and just focused on the loop

invariant generation part and specifically tried all the programs that are

generating power two invariants. This list as its shown in Table 6.2 consists

of 16 different programs which 9 of them are in OpenCL and the rest are

CUDA.

Catagory Method
#pred NP + INV + Testing No Testing

before after verified #conj Time(s) Time(s)

AMD
SDK

HistogramAtomics 48 2 No – TO TO
PrefixSum 74 14 Yes 14 17 200

ScanLargeArrays2 74 14 Yes 14 19 213
ScanLargeArrays3 74 14 Yes 14 25 231

parboil
mri-gridding

scan inter1 36 6 Yes 6 29 72
scan inter2 38 8 Yes 8 10 18

scan L1 74 14 Yes 14 1696 TO
splitSort 84 24 No – TO TO

shoc scan 74 14 Yes 14 31 312

CUDA20
scan best 76 16 Yes 16 47 475

scan workefficient 76 16 Yes 16 44 535
scan inter2 76 16 Yes 16 121 1046

CUDA50

mergeSort 40 8 Yes 8 280 1992
bitonicSort0 40 8 Yes 8 1020 1475
bitonicSort1 40 8 Yes 8 338 1299

oddEvenMergeSort 40 8 Yes 8 362 1381

Table 6.2: GPUVerify Evaluation Results

Table 6.2 describes the result of out experiments with GPUVerify bench-

mark. Testing in this case can prune up to 95 percent of power two invariants

and can speed up the verification up to 93 percent. We also managed to ver-

ify one program that were timed out without testing. Therefore, we can have

similar indication that testing can make Houdini[10] more scalable.
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CHAPTER 7

FUTURE WORK

We can extend and improve what we did in future in a few areas. One

area would be to make our tool fully automatic. The main concerns for this

purpose would be test input generation. However, we can assume when a

developers wants to verify its program they can come up with some test

cases. Another region for extension would be to apply the same approach on

other types of verification.

In order to make the tool fully automated, we need to work on some points.

We need to extract the name, type and number of variables of the program,

detect the start and end of loops, check the entry points inside the loop,

find unimplemented functions and replace them with safe functions, and

generate the proper test inputs for the program. The latter is more difficult,

but there are already some tools to automatically generate test inputs. The

most famous one is Microsoft PEX[16] which uses symbolic execution to

come up with the test inputs to achieve the most branch coverage. Another

similar tool is KLEE[17] which also uses symbolic execution to achieve high

code coverage. Between these two KLEE[17] could be potentially a better

choice for the current tool since it is applicable for C programming language

compared to PEX[16] which uses C#.

We can definitely extend the area of this approach from heap data struc-

tures to any type of verification using conjunctive loop invariant generations.

A proper next project would be adding more GPUVerify[1] programs to the

evaluation by focusing on different type of invariants.

The main weak point of our approach is that it is only applicable to con-

junctive invariants. Although a great number of programs only need conjunc-

tive invariants, lack of disjunctive invariants puts the weight on coming up

with templates. Therefore, Another future work could be looking into find-

ing a way to apply our approach for disjunctive invariant either by making

the template generation smart or using new ways that change the problem

21



of disjunctive invariants inference to conjunctive ones[6].

The best scenario for invariant generation is when everything is fully au-

tomated including coming up with the templates. Thus, the most difficult

and at the same time crucial future work would be automating the process

of template generation. One way to approach this problem would be using

other elements inside the programs like assumptions, assertions and type of

predicates.
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CHAPTER 8

RELATED WORK

Since invariant inference is the biggest challenge of verification, there are

so many related works around it. We can simply divide all invariant infer-

ence methods to two main categories black-box and white-box. White-box

method include abstract interpretation[18], interpolation[19, 20] and con-

straint solving[21, 22, 5]. However, the most prominent black-box tool is

Daikon[23] which also uses a dynamic approach to find the proper invariant.

Another new tool in black-box technique is Houdini[10] which uses learning.

Loop invariant inference using dynamic testing is become one of the great-

est technique in computer science and specially in verification[24]. Another

tool which works around this methodology is DySy[24]. This tool combines

the concrete executions of tests on the program with the dynamic symbolic

executions to come up with the lowest set of candidate invariant, therefore,

speed up the process of verification.

While black-box techniques like Daikon[23] and Houdini[10] seem to be

more applicable in finding loop invariants, the main challenge for them would

be to come up with the most useful templates. This task is difficult because

in real life programs, loop invariants can be dramatically complex. On the

other hand, white-box approach can help in these situations. One way to

infer the loop invariant would be to look at the already existing assertions in

the program and come up with the proper invariant[11].

Using templates in generating loop invariants is drastically increasing in

new invariant inference methodologies[1, 8]. Tools like GPUVerify[1] are

showing how actually this approach can be useful in real life programs and

can help developers to verify their programs in a relatively short amount of

time without any extra work.

The main reason behind increasing use of templates in invariant generation

is learning tools like Houdini[10] which use machine learning to provide a

simple way to test a set of candidate invariants and give feedback. The
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most important newly introduced category of learners is ICE[7] which uses

example, counter-examples and implications to come up with the proper loop

invariant to prove the program correct.
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CHAPTER 9

CONCLUSION

In sum, testing approach in learning conjunctive loop invariant is highly ef-

fective and efficient. Our framework was semi-automatic because we needed

to write down the test cases manually. However, testing can be easily au-

tomated by using tools like PEX, or other tools that provides test inputs,

and because running time compared to learning and verification time is not

considerable, it will be a great help to invariant learners. On the other hand,

testing can be useful only when we are considering conjunctive invariants,

and we cannot use testing, when we consider other type of invariants like

disjunctive invariants, but if we use more sophisticated templates we can

achieve that.

Three phase approach to generate invariants also is very useful. Not only

it reduces the problem of complicated invariants for simple programs, but it

also reduce the time of verification significantly by lowering the number of

candidate invariants.
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