4 research outputs found

    Learning human actions by combining global dynamics and local appearance

    Get PDF
    In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods

    Intelligent human action recognition using an ensemble model of evolving deep networks with swarm-based optimization.

    Get PDF
    Automatic interpretation of human actions from realistic videos attracts increasing research attention owing to its growing demand in real-world deployments such as biometrics, intelligent robotics, and surveillance. In this research, we propose an ensemble model of evolving deep networks comprising Convolutional Neural Networks (CNNs) and bidirectional Long Short-Term Memory (BLSTM) networks for human action recognition. A swarm intelligence (SI)-based algorithm is also proposed for identifying the optimal hyper-parameters of the deep networks. The SI algorithm plays a crucial role for determining the BLSTM network and learning configurations such as the learning and dropout rates and the number of hidden neurons, in order to establish effective deep features that accurately represent the temporal dynamics of human actions. The proposed SI algorithm incorporates hybrid crossover operators implemented by sine, cosine, and tanh functions for multiple elite offspring signal generation, as well as geometric search coefficients extracted from a three-dimensional super-ellipse surface. Moreover, it employs a versatile search process led by the yielded promising offspring solutions to overcome stagnation. Diverse CNN–BLSTM networks with distinctive hyper-parameter settings are devised. An ensemble model is subsequently constructed by aggregating a set of three optimized CNN–BLSTM​ networks based on the average prediction probabilities. Evaluated using several publicly available human action data sets, our evolving ensemble deep networks illustrate statistically significant superiority over those with default and optimal settings identified by other search methods. The proposed SI algorithm also shows great superiority over several other methods for solving diverse high-dimensional unimodal and multimodal optimization functions with artificial landscapes

    Simple and Complex Human Action Recognition in Constrained and Unconstrained Videos

    Get PDF
    Human action recognition plays a crucial role in visual learning applications such as video understanding and surveillance, video retrieval, human-computer interactions, and autonomous driving systems. A variety of methodologies have been proposed for human action recognition via developing of low-level features along with the bag-of-visual-word models. However, much less research has been performed on the compound of pre-processing, encoding and classification stages. This dissertation focuses on enhancing the action recognition performances via ensemble learning, hybrid classifier, hierarchical feature representation, and key action perception methodologies. Action variation is one of the crucial challenges in video analysis and action recognition. We address this problem by proposing the hybrid classifier (HC) to discriminate actions which contain similar forms of motion features such as walking, running, and jogging. Aside from that, we show and proof that the fusion of various appearance-based and motion features can boost the simple and complex action recognition performance. The next part of the dissertation introduces pooled-feature representation (PFR) which is derived from a double phase encoding framework (DPE). Considering that a given unconstrained video is composed of a sequence of simple frames, the first phase of DPE generates temporal sub-volumes from the video and represents them individually by employing the proposed improved rank pooling (IRP) method. The second phase constructs the pool of features by fusing the represented vectors from the first phase. The pool is compressed and then encoded to provide video-parts vector (VPV). The DPE framework allows distilling the video representation and hierarchically extracting new information. Compared with recent video encoding approaches, VPV can preserve the higher-level information through standard encoding of low-level features in two phases. Furthermore, the encoded vectors from both phases of DPE are fused along with a compression stage to develop PFR
    corecore