24 research outputs found

    Boosted Generative Models

    Full text link
    We propose a novel approach for using unsupervised boosting to create an ensemble of generative models, where models are trained in sequence to correct earlier mistakes. Our meta-algorithmic framework can leverage any existing base learner that permits likelihood evaluation, including recent deep expressive models. Further, our approach allows the ensemble to include discriminative models trained to distinguish real data from model-generated data. We show theoretical conditions under which incorporating a new model in the ensemble will improve the fit and empirically demonstrate the effectiveness of our black-box boosting algorithms on density estimation, classification, and sample generation on benchmark datasets for a wide range of generative models.Comment: AAAI 201

    Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation

    Full text link
    We propose a new deep learning method for tumour segmentation when dealing with missing imaging modalities. Instead of producing one network for each possible subset of observed modalities or using arithmetic operations to combine feature maps, our hetero-modal variational 3D encoder-decoder independently embeds all observed modalities into a shared latent representation. Missing data and tumour segmentation can be then generated from this embedding. In our scenario, the input is a random subset of modalities. We demonstrate that the optimisation problem can be seen as a mixture sampling. In addition to this, we introduce a new network architecture building upon both the 3D U-Net and the Multi-Modal Variational Auto-Encoder (MVAE). Finally, we evaluate our method on BraTS2018 using subsets of the imaging modalities as input. Our model outperforms the current state-of-the-art method for dealing with missing modalities and achieves similar performance to the subset-specific equivalent networks.Comment: Accepted at MICCAI 201

    Leveraging the Exact Likelihood of Deep Latent Variable Models

    Get PDF
    Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models has been largely overlooked. The purpose of this work is to study the general properties of this quantity and to show how they can be leveraged in practice. We focus on important inferential problems that rely on the likelihood: estimation and missing data imputation. First, we investigate maximum likelihood estimation for DLVMs: in particular, we show that most unconstrained models used for continuous data have an unbounded likelihood function. This problematic behaviour is demonstrated to be a source of mode collapse. We also show how to ensure the existence of maximum likelihood estimates, and draw useful connections with nonparametric mixture models. Finally, we describe an algorithm for missing data imputation using the exact conditional likelihood of a deep latent variable model. On several data sets, our algorithm consistently and significantly outperforms the usual imputation scheme used for DLVMs

    Break The Spell Of Total Correlation In betaTCVAE

    Full text link
    In the absence of artificial labels, the independent and dependent features in the data are cluttered. How to construct the inductive biases of the model to flexibly divide and effectively contain features with different complexity is the main focal point of unsupervised disentangled representation learning. This paper proposes a new iterative decomposition path of total correlation and explains the disentangled representation ability of VAE from the perspective of model capacity allocation. The newly developed objective function combines latent variable dimensions into joint distribution while relieving the independence constraints of marginal distributions in combination, leading to latent variables with a more manipulable prior distribution. The novel model enables VAE to adjust the parameter capacity to divide dependent and independent data features flexibly. Experimental results on various datasets show an interesting relevance between model capacity and the latent variable grouping size, called the "V"-shaped best ELBO trajectory. Additionally, we empirically demonstrate that the proposed method obtains better disentangling performance with reasonable parameter capacity allocation
    corecore