4,697 research outputs found

    Learning End-To-End Scene Flow by Distilling Single Tasks Knowledge

    Full text link
    Scene flow is a challenging task aimed at jointly estimating the 3D structure and motion of the sensed environment. Although deep learning solutions achieve outstanding performance in terms of accuracy, these approaches divide the whole problem into standalone tasks (stereo and optical flow) addressing them with independent networks. Such a strategy dramatically increases the complexity of the training procedure and requires power-hungry GPUs to infer scene flow barely at 1 FPS. Conversely, we propose DWARF, a novel and lightweight architecture able to infer full scene flow jointly reasoning about depth and optical flow easily and elegantly trainable end-to-end from scratch. Moreover, since ground truth images for full scene flow are scarce, we propose to leverage on the knowledge learned by networks specialized in stereo or flow, for which much more data are available, to distill proxy annotations. Exhaustive experiments show that i) DWARF runs at about 10 FPS on a single high-end GPU and about 1 FPS on NVIDIA Jetson TX2 embedded at KITTI resolution, with moderate drop in accuracy compared to 10x deeper models, ii) learning from many distilled samples is more effective than from the few, annotated ones available. Code available at: https://github.com/FilippoAleotti/Dwarf-TensorflowComment: Accepted to AAAI 2020. Project page: https://vision.disi.unibo.it/~faleotti/dwarf.htm

    Deep Lidar CNN to Understand the Dynamics of Moving Vehicles

    Get PDF
    Perception technologies in Autonomous Driving are experiencing their golden age due to the advances in Deep Learning. Yet, most of these systems rely on the semantically rich information of RGB images. Deep Learning solutions applied to the data of other sensors typically mounted on autonomous cars (e.g. lidars or radars) are not explored much. In this paper we propose a novel solution to understand the dynamics of moving vehicles of the scene from only lidar information. The main challenge of this problem stems from the fact that we need to disambiguate the proprio-motion of the 'observer' vehicle from that of the external 'observed' vehicles. For this purpose, we devise a CNN architecture which at testing time is fed with pairs of consecutive lidar scans. However, in order to properly learn the parameters of this network, during training we introduce a series of so-called pretext tasks which also leverage on image data. These tasks include semantic information about vehicleness and a novel lidar-flow feature which combines standard image-based optical flow with lidar scans. We obtain very promising results and show that including distilled image information only during training, allows improving the inference results of the network at test time, even when image data is no longer used.Comment: Presented in IEEE ICRA 2018. IEEE Copyrights: Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses. (V2 just corrected comments on arxiv submission

    What Works at Scale? Distilling the Critical Success Factors for Scaling Up Rural Sanitation

    Get PDF
    This paper is based on the Knowledge Sharing Forum of the same name. It examines the conditions for success in sanitation programs and strategies that lead to robust implementation in various countries
    • …
    corecore