140 research outputs found

    Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion

    Get PDF
    Quadruped robots demonstrated extensive capabilities of traversing complex and unstructured environments. Optimization-based techniques gave a relevant impulse to the research on legged locomotion. Indeed, by designing the cost function and the constraints, we can guarantee the feasibility of a motion and impose high-level locomotion tasks, e.g., tracking of a reference velocity. This allows one to have a generic planning approach without the need to tailor a specific motion for each terrain, as in the heuristic case. In this context, Model Predictive Control (MPC) can compensate for model inaccuracies and external disturbances, thanks to the high-frequency replanning. The main objective of this dissertation is to develop a Nonlinear MPC (NMPC)-based locomotion framework for quadruped robots. The aim is to obtain an algorithm which can be extended to different robots and gaits; in addition, I sought to remove some assumptions generally done in the literature, e.g., heuristic reference generator and user-defined gait sequence. The starting point of my work is the definition of the Optimal Control Problem to generate feasible trajectories for the Center of Mass. It is descriptive enough to capture the linear and angular dynamics of the robot as a whole. A simplified model (Single Rigid Body Dynamics model) is used for the system dynamics, while a novel cost term maximizes leg mobility to improve robustness in the presence of nonflat terrain. In addition, to test the approach on the real robot, I dedicated particular effort to implementing both a heuristic reference generator and an interface for the controller, and integrating them into the controller framework developed previously by other team members. As a second contribution of my work, I extended the locomotion framework to deal with a trot gait. In particular, I generalized the reference generator to be based on optimization. Exploiting the Linear Inverted Pendulum model, this new module can deal with the underactuation of the trot when only two legs are in contact with the ground, endowing the NMPC with physically informed reference trajectories to be tracked. In addition, the reference velocities are used to correct the heuristic footholds, obtaining contact locations coherent with the motion of the base, even though they are not directly optimized. The model used by the NMPC receives as input the gait sequence, thus with the last part of my work I developed an online multi-contact planner and integrated it into the MPC framework. Using a machine learning approach, the planner computes the best feasible option, even in complex environments, in a few milliseconds, by ranking online a set of discrete options for footholds, i.e., which leg to move and where to step. To train the network, I designed a novel function, evaluated offline, which considers the value of the cost of the NMPC and robustness/stability metrics for each option. These methods have been validated with simulations and experiments over the three years. I tested the NMPC on the Hydraulically actuated Quadruped robot (HyQ) of the IIT’s Dynamic Legged Systems lab, performing omni-directional motions on flat terrain and stepping on a pallet (both static and relocated during the motion) with a crawl gait. The trajectory replanning is performed at high-frequency, and visual information of the terrain is included to traverse uneven terrain. A Unitree Aliengo quadruped robot is used to execute experiments with the trot gait. The optimization-based reference generator allows the robot to reach a fixed goal and recover from external pushes without modifying the structure of the NMPC. Finally, simulations with the Solo robot are performed to validate the neural network-based contact planning. The robot successfully traverses complex scenarios, e.g., stepping stones, with both walk and trot gaits, choosing the footholds online. The achieved results improved the robustness and the performance of the quadruped locomotion. High-frequency replanning, dealing with a fixed goal, recovering after a push, and the automatic selection of footholds could help the robots to accomplish important tasks for the humans, for example, providing support in a disaster response scenario or inspecting an unknown environment. In the future, the contact planning will be transferred to the real hardware. Possible developments foresee the optimization of the gait timings, i.e., stance and swing duration, and a framework which allows the automatic transition between gaits

    Human-Inspired Balancing and Recovery Stepping for Humanoid Robots

    Get PDF
    Robustly maintaining balance on two legs is an important challenge for humanoid robots. The work presented in this book represents a contribution to this area. It investigates efficient methods for the decision-making from internal sensors about whether and where to step, several improvements to efficient whole-body postural balancing methods, and proposes and evaluates a novel method for efficient recovery step generation, leveraging human examples and simulation-based reinforcement learning

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Humanoid robot navigation: getting localization information from vision

    No full text
    International audienceIn this article, we present our work to provide a navigation and localization system on a constrained humanoid platform, the NAO robot, without modifying the robot sensors. First we try to implement a simple and light version of classical monocular Simultaneous Localization and Mapping (SLAM) algorithms, while adapting to the CPU and camera quality, which turns out to be insufficient on the platform for the moment. From our work on keypoints tracking, we identify that some keypoints can be still accurately tracked at little cost, and use them to build a visual compass. This compass is then used to correct the robot walk, because it makes it possible to control the robot orientation accurately

    Humanoid robot omnidirectional walking trajectory generation and control

    Get PDF
    Walking humanoid machines, once only seen or read in science fiction, became reality with the intensive research of the last four decades. However, there is a long way to go in the direction of technical achievements before humanoid robots can be used widely as human assistants. The design of a controller which can achieve a steady and stable walk is central in humanoid robotics. This control cannot be achieved if the reference trajectories are not generated suitably. The Zero Moment Point (ZMP) is the most widely used stability criterion for trajectory generation. The Center of Mass (CoM) reference can be obtained from the ZMP reference in a number of ways. A natural ZMP reference trajectory and a Fourier series approximation based method for computing the CoM reference from it, was previously proposed and published for the Sabanci University Robotics ReseArch Laboratory Platform (SURALP), for a straight walk. This thesis improves these techniques by modifying the straight walk reference trajectory into an omnidirectional one. The second contribution of this thesis is controller designs in order to cope with the changing slopes of the walking surface. The proposed controllers employ the trunk link rotational motion to adapt to the ground surface. A virtual pelvis link is introduced for the robots which do not posses roll and pitch axis in pelvis link. The proposed reference generation and control algorithms are tested on the humanoid robot SURALP. The experiments indicate that these methods are successful under various floor conditions

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    Motion Planning and Control of Dynamic Humanoid Locomotion

    Get PDF
    Inspired by human, humanoid robots has the potential to become a general-purpose platform that lives along with human. Due to the technological advances in many field, such as actuation, sensing, control and intelligence, it finally enables humanoid robots to possess human comparable capabilities. However, humanoid locomotion is still a challenging research field. The large number of degree of freedom structure makes the system difficult to coordinate online. The presence of various contact constraints and the hybrid nature of locomotion tasks make the planning a harder problem to solve. Template model anchoring approach has been adopted to bridge the gap between simple model behavior and the whole-body motion of humanoid robot. Control policies are first developed for simple template models like Linear Inverted Pendulum Model (LIPM) or Spring Loaded Inverted Pendulum(SLIP), the result controlled behaviors are then been mapped to the whole-body motion of humanoid robot through optimization-based task-space control strategies. Whole-body humanoid control framework has been verified on various contact situations such as unknown uneven terrain, multi-contact scenarios and moving platform and shows its generality and versatility. For walking motion, existing Model Predictive Control approach based on LIPM has been extended to enable the robot to walk without any reference foot placement anchoring. It is kind of discrete version of \u201cwalking without thinking\u201d. As a result, the robot could achieve versatile locomotion modes such as automatic foot placement with single reference velocity command, reactive stepping under large external disturbances, guided walking with small constant external pushing forces, robust walking on unknown uneven terrain, reactive stepping in place when blocked by external barrier. As an extension of this proposed framework, also to increase the push recovery capability of the humanoid robot, two new configurations have been proposed to enable the robot to perform cross-step motions. For more dynamic hopping and running motion, SLIP model has been chosen as the template model. Different from traditional model-based analytical approach, a data-driven approach has been proposed to encode the dynamics of the this model. A deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. Simulations have been performed to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions. The method proposed based on 2D SLIP model can be generalized to 3D SLIP model and the extension has been briefly mentioned at the end

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities
    • …
    corecore