2,593 research outputs found

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results.

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network

    Big Data as a Driver for Clinical Decision Support Systems: A Learning Health Systems Perspective

    Get PDF
    Big data technologies are nowadays providing health care with powerful instruments to gather and analyze large volumes of heterogeneous data collected for different purposes, including clinical care, administration, and research. This makes possible to design IT infrastructures that favor the implementation of the so-called "Learning Healthcare System Cycle," where healthcare practice and research are part of a unique and synergic process. In this paper we highlight how "Big Data enabled" integrated data collections may support clinical decision-making together with biomedical research. Two effective implementations are reported, concerning decision support in Diabetes and in Inherited Arrhythmogenic Diseases

    Bioinformatic-driven search for metabolic biomarkers in disease

    Get PDF
    The search and validation of novel disease biomarkers requires the complementary power of professional study planning and execution, modern profiling technologies and related bioinformatics tools for data analysis and interpretation. Biomarkers have considerable impact on the care of patients and are urgently needed for advancing diagnostics, prognostics and treatment of disease. This survey article highlights emerging bioinformatics methods for biomarker discovery in clinical metabolomics, focusing on the problem of data preprocessing and consolidation, the data-driven search, verification, prioritization and biological interpretation of putative metabolic candidate biomarkers in disease. In particular, data mining tools suitable for the application to omic data gathered from most frequently-used type of experimental designs, such as case-control or longitudinal biomarker cohort studies, are reviewed and case examples of selected discovery steps are delineated in more detail. This review demonstrates that clinical bioinformatics has evolved into an essential element of biomarker discovery, translating new innovations and successes in profiling technologies and bioinformatics to clinical application

    A study assessing the characteristics of big data environments that predict high research impact: application of qualitative and quantitative methods

    Full text link
    BACKGROUND: Big data offers new opportunities to enhance healthcare practice. While researchers have shown increasing interest to use them, little is known about what drives research impact. We explored predictors of research impact, across three major sources of healthcare big data derived from the government and the private sector. METHODS: This study was based on a mixed methods approach. Using quantitative analysis, we first clustered peer-reviewed original research that used data from government sources derived through the Veterans Health Administration (VHA), and private sources of data from IBM MarketScan and Optum, using social network analysis. We analyzed a battery of research impact measures as a function of the data sources. Other main predictors were topic clusters and authors’ social influence. Additionally, we conducted key informant interviews (KII) with a purposive sample of high impact researchers who have knowledge of the data. We then compiled findings of KIIs into two case studies to provide a rich understanding of drivers of research impact. RESULTS: Analysis of 1,907 peer-reviewed publications using VHA, IBM MarketScan and Optum found that the overall research enterprise was highly dynamic and growing over time. With less than 4 years of observation, research productivity, use of machine learning (ML), natural language processing (NLP), and the Journal Impact Factor showed substantial growth. Studies that used ML and NLP, however, showed limited visibility. After adjustments, VHA studies had generally higher impact (10% and 27% higher annualized Google citation rates) compared to MarketScan and Optum (p<0.001 for both). Analysis of co-authorship networks showed that no single social actor, either a community of scientists or institutions, was dominating. Other key opportunities to achieve high impact based on KIIs include methodological innovations, under-studied populations and predictive modeling based on rich clinical data. CONCLUSIONS: Big data for purposes of research analytics has grown within the three data sources studied between 2013 and 2016. Despite important challenges, the research community is reacting favorably to the opportunities offered both by big data and advanced analytic methods. Big data may be a logical and cost-efficient choice to emulate research initiatives where RCTs are not possible

    The ReIMAGINE multimodal warehouse: using artificial intelligence for accurate risk stratification of prostate cancer

    Get PDF
    Introduction. Prostate cancer (PCa) is the most frequent cancer diagnosis in men worldwide. Our ability to identify those men whose cancer will decrease their lifespan and/or quality of life remains poor. The ReIMAGINE Consortium has been established to improve PCa diagnosis. Materials and methods. MRI will likely become the future cornerstone of the risk-stratification process for men at risk of early prostate cancer. We will, for the first time, be able to combine the underlying molecular changes in PCa with the state-of-the-art imaging. ReIMAGINE Screening invites men for MRI and PSA evaluation. ReIMAGINE Risk includes men at risk of prostate cancer based on MRI, and includes biomarker testing. Results. Baseline clinical information, genomics, blood, urine, fresh prostate tissue samples, digital pathology and radiomics data will be analysed. Data will be de-identified, stored with correlated mpMRI disease endotypes and linked with long term follow-up outcomes in an instance of the Philips Clinical Data Lake, consisting of cloud-based software. The ReIMAGINE platform includes application programming interfaces and a user interface that allows users to browse data, select cohorts, manage users and access rights, query data, and more. Connection to analytics tools such as Python allows statistical and stratification method pipelines to run profiling regression analyses. Discussion. The ReIMAGINE Multimodal Warehouse comprises a unique data source for PCa research, to improve risk stratification for PCa and inform clinical practice. The de-identified dataset characterized by clinical, imaging, genomics and digital pathology PCa patient phenotypes will be a valuable resource for the scientific and medical community
    corecore