23,686 research outputs found

    Relating visual and semantic image descriptors

    Get PDF
    This paper addresses the automatic analysis of visual content and extraction of metadata beyond pure visual descriptors. Two approaches are described: Automatic Image Annotation (AIA) and Confidence Clustering (CC). AIA attempts to automatically classify images based on two binary classifiers and is designed for the consumer electronics domain. Contrastingly, the CC approach does not attempt to assign a unique label to images but rather to organise the database based on concepts

    Automatic human face detection for content-based image annotation

    Get PDF
    In this paper, an automatic human face detection approach using colour analysis is applied for content-based image annotation. In the face detection, the probable face region is detected by adaptive boosting algorithm, and then combined with a colour filtering classifier to enhance the accuracy in face detection. The initial experimental benchmark shows the proposed scheme can be efficiently applied for image annotation with higher fidelity

    Learning based automatic face annotation for arbitrary poses and expressions from frontal images only

    Get PDF
    Statistical approaches for building non-rigid deformable models, such as the active appearance model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases

    Annotating Object Instances with a Polygon-RNN

    Full text link
    We propose an approach for semi-automatic annotation of object instances. While most current methods treat object segmentation as a pixel-labeling problem, we here cast it as a polygon prediction task, mimicking how most current datasets have been annotated. In particular, our approach takes as input an image crop and sequentially produces vertices of the polygon outlining the object. This allows a human annotator to interfere at any time and correct a vertex if needed, producing as accurate segmentation as desired by the annotator. We show that our approach speeds up the annotation process by a factor of 4.7 across all classes in Cityscapes, while achieving 78.4% agreement in IoU with original ground-truth, matching the typical agreement between human annotators. For cars, our speed-up factor is 7.3 for an agreement of 82.2%. We further show generalization capabilities of our approach to unseen datasets

    Bimodal network architectures for automatic generation of image annotation from text

    Full text link
    Medical image analysis practitioners have embraced big data methodologies. This has created a need for large annotated datasets. The source of big data is typically large image collections and clinical reports recorded for these images. In many cases, however, building algorithms aimed at segmentation and detection of disease requires a training dataset with markings of the areas of interest on the image that match with the described anomalies. This process of annotation is expensive and needs the involvement of clinicians. In this work we propose two separate deep neural network architectures for automatic marking of a region of interest (ROI) on the image best representing a finding location, given a textual report or a set of keywords. One architecture consists of LSTM and CNN components and is trained end to end with images, matching text, and markings of ROIs for those images. The output layer estimates the coordinates of the vertices of a polygonal region. The second architecture uses a network pre-trained on a large dataset of the same image types for learning feature representations of the findings of interest. We show that for a variety of findings from chest X-ray images, both proposed architectures learn to estimate the ROI, as validated by clinical annotations. There is a clear advantage obtained from the architecture with pre-trained imaging network. The centroids of the ROIs marked by this network were on average at a distance equivalent to 5.1% of the image width from the centroids of the ground truth ROIs.Comment: Accepted to MICCAI 2018, LNCS 1107
    • 

    corecore