2,487 research outputs found

    Learning Disentangled Representations with Semi-Supervised Deep Generative Models

    Get PDF
    Variational autoencoders (VAEs) learn representations of data by jointly training a probabilistic encoder and decoder network. Typically these models encode all features of the data into a single variable. Here we are interested in learning disentangled representations that encode distinct aspects of the data into separate variables. We propose to learn such representations using model architectures that generalise from standard VAEs, employing a general graphical model structure in the encoder and decoder. This allows us to train partially-specified models that make relatively strong assumptions about a subset of interpretable variables and rely on the flexibility of neural networks to learn representations for the remaining variables. We further define a general objective for semi-supervised learning in this model class, which can be approximated using an importance sampling procedure. We evaluate our framework's ability to learn disentangled representations, both by qualitative exploration of its generative capacity, and quantitative evaluation of its discriminative ability on a variety of models and datasets.Comment: Accepted for publication at NIPS 201

    Human-controllable and structured deep generative models

    Get PDF
    Deep generative models are a class of probabilistic models that attempts to learn the underlying data distribution. These models are usually trained in an unsupervised way and thus, do not require any labels. Generative models such as Variational Autoencoders and Generative Adversarial Networks have made astounding progress over the last years. These models have several benefits: eased sampling and evaluation, efficient learning of low-dimensional representations for downstream tasks, and better understanding through interpretable representations. However, even though the quality of these models has improved immensely, the ability to control their style and structure is limited. Structured and human-controllable representations of generative models are essential for human-machine interaction and other applications, including fairness, creativity, and entertainment. This thesis investigates learning human-controllable and structured representations with deep generative models. In particular, we focus on generative modelling of 2D images. For the first part, we focus on learning clustered representations. We propose semi-parametric hierarchical variational autoencoders to estimate the intensity of facial action units. The semi-parametric model forms a hybrid generative-discriminative model and leverages both parametric Variational Autoencoder and non-parametric Gaussian Process autoencoder. We show superior performance in comparison with existing facial action unit estimation approaches. Based on the results and analysis of the learned representation, we focus on learning Mixture-of-Gaussians representations in an autoencoding framework. We deviate from the conventional autoencoding framework and consider a regularized objective with the Cauchy-Schwarz divergence. The Cauchy-Schwarz divergence allows a closed-form solution for Mixture-of-Gaussian distributions and, thus, efficiently optimizing the autoencoding objective. We show that our model outperforms existing Variational Autoencoders in density estimation, clustering, and semi-supervised facial action detection. We focus on learning disentangled representations for conditional generation and fair facial attribute classification for the second part. Conditional image generation relies on the accessibility to large-scale annotated datasets. Nevertheless, the geometry of visual objects, such as in faces, cannot be learned implicitly and deteriorate image fidelity. We propose incorporating facial landmarks with a statistical shape model and a differentiable piecewise affine transformation to separate the representation for appearance and shape. The goal of incorporating facial landmarks is that generation is controlled and can separate different appearances and geometries. In our last work, we use weak supervision for disentangling groups of variations. Works on learning disentangled representation have been done in an unsupervised fashion. However, recent works have shown that learning disentangled representations is not identifiable without any inductive biases. Since then, there has been a shift towards weakly-supervised disentanglement learning. We investigate using regularization based on the Kullback-Leiber divergence to disentangle groups of variations. The goal is to have consistent and separated subspaces for different groups, e.g., for content-style learning. Our evaluation shows increased disentanglement abilities and competitive performance for image clustering and fair facial attribute classification with weak supervision compared to supervised and semi-supervised approaches.Open Acces

    DGPose: Deep Generative Models for Human Body Analysis

    Get PDF
    Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in which the body pose and the visual appearance are disentangled. Such a disentanglement allows independent manipulation of pose and appearance, and hence enables applications such as pose-transfer without specific training for such a task. Our proposed models, the Conditional-DGPose and the Semi-DGPose, have different characteristics. In the first, body pose labels are taken as conditioners, from a fully-supervised training set. In the second, our structured semi-supervised approach allows for pose estimation to be performed by the model itself and relaxes the need for labelled data. Therefore, the Semi-DGPose aims for the joint understanding and generation of people in images. It is not only capable of mapping images to interpretable latent representations but also able to map these representations back to the image space. We compare our models with relevant baselines, the ClothNet-Body and the Pose Guided Person Generation networks, demonstrating their merits on the Human3.6M, ChictopiaPlus and DeepFashion benchmarks.Comment: IJCV 2020 special issue on 'Generating Realistic Visual Data of Human Behavior' preprint. Keywords: deep generative models, semi-supervised learning, human pose estimation, variational autoencoders, generative adversarial network

    InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

    Full text link
    This paper describes InfoGAN, an information-theoretic extension to the Generative Adversarial Network that is able to learn disentangled representations in a completely unsupervised manner. InfoGAN is a generative adversarial network that also maximizes the mutual information between a small subset of the latent variables and the observation. We derive a lower bound to the mutual information objective that can be optimized efficiently, and show that our training procedure can be interpreted as a variation of the Wake-Sleep algorithm. Specifically, InfoGAN successfully disentangles writing styles from digit shapes on the MNIST dataset, pose from lighting of 3D rendered images, and background digits from the central digit on the SVHN dataset. It also discovers visual concepts that include hair styles, presence/absence of eyeglasses, and emotions on the CelebA face dataset. Experiments show that InfoGAN learns interpretable representations that are competitive with representations learned by existing fully supervised methods
    corecore