

Edinburgh Research Explorer

Learning Disentangled Representations with Semi-Supervised
Deep Generative Models
Citation for published version:
Siddharth, N, Paige, B, van de Meent, J-W, Desmaison, A, Goodman, N, Kohli, P, Wood, F & Torr, PHS
2017, Learning Disentangled Representations with Semi-Supervised Deep Generative Models. in I Guyon,
UV Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan & R Garnett (eds), Advances in Neural
Information Processing Systems. Neural Information Processing Systems, pp. 5925-5935, Thirty-first
Annual Conference on Neural Information Processing Systems, Long Beach, United States, 4/12/17.
<https://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-
generative-models>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Advances in Neural Information Processing Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models
https://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models
https://www.research.ed.ac.uk/en/publications/7db5c66c-ae4c-4af9-9804-c65b479b2876

Learning Disentangled Representations with
Semi-Supervised Deep Generative Models

N. Siddharth†
University of Oxford

nsid@robots.ox.ac.uk

Brooks Paige†
Alan Turing Institute

University of Cambridge
bpaige@turing.ac.uk

Jan-Willem van de Meent†
Northeastern University

j.vandemeent@northeastern.edu

Alban Desmaison
University of Oxford

alban@robots.ox.ac.uk

Noah D. Goodman
Stanford University

ngoodman@stanford.edu

Pushmeet Kohli ∗
Deepmind

pushmeet@google.com

Frank Wood
University of Oxford

fwood@robots.ox.ac.uk

Philip H.S. Torr
University of Oxford

philip.torr@eng.ox.ac.uk

Abstract

Variational autoencoders (VAEs) learn representations of data by jointly training a probabilistic
encoder and decoder network. Typically these models encode all features of the data into a
single variable. Here we are interested in learning disentangled representations that encode
distinct aspects of the data into separate variables. We propose to learn such representations
using model architectures that generalise from standard VAEs, employing a general graphical
model structure in the encoder and decoder. This allows us to train partially-specified models
that make relatively strong assumptions about a subset of interpretable variables and rely on
the flexibility of neural networks to learn representations for the remaining variables. We
further define a general objective for semi-supervised learning in this model class, which can be
approximated using an importance sampling procedure. We evaluate our framework’s ability
to learn disentangled representations, both by qualitative exploration of its generative capacity,
and quantitative evaluation of its discriminative ability on a variety of models and datasets.

1 Introduction

Learning representations from data is one of the fundamental challenges in machine learning and
artificial intelligence. Characteristics of learned representations can depend on their intended use.
For the purposes of solving a single task, the primary characteristic required is suitability for that
task. However, learning separate representations for each and every such task involves a large amount
of wasteful repetitive effort. A representation that has some factorisable structure, and consistent
semantics associated to different parts, is more likely to generalise to a new task.

Probabilistic generative models provide a general framework for learning representations: a model is
specified by a joint probability distribution both over the data and over latent random variables, and a
representation can be found by considering the posterior on latent variables given specific data. The
learned representation — that is, inferred values of latent variables — depends then not just on the
data, but also on the generative model in its choice of latent variables and the relationships between
the latent variables and the data. There are two extremes of approaches to constructing generative
models. At one end are fully-specified probabilistic graphical models [19, 22], in which a practitioner
decides on all latent variables present in the joint distribution, the relationships between them, and
the functional form of the conditional distributions which define the model. At the other end are

∗Author was at Microsoft Research during this project. † indicates equal contribution.
31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

deep generative models [8, 17, 20, 21], which impose very few assumptions on the structure of the
model, instead employing neural networks as flexible function approximators that can be used to
train a conditional distribution on the data, rather than specify it by hand.

The tradeoffs are clear. In an explicitly constructed graphical model, the structure and form of the
joint distribution ensures that latent variables will have particular semantics, yielding a disentangled
representation. Unfortunately, defining a good probabilistic model is hard: in complex perceptual
domains such as vision, extensive feature engineering (e.g. Berant et al. [1], Siddharth et al. [31]) may
be necessary to define a suitable likelihood function. Deep generative models completely sidestep
the difficulties of feature engineering. Although they address learning representations which then
enable them to better reconstruct data, the representations themselves do not always exhibit consistent
meaning along axes of variation: they produce entangled representations. While such approaches
have considerable merit, particularly when faced with the absence of any side information about data,
there are often situations when aspects of variation in data can be, or are desired to be characterised.

Bridging this gap is challenging. One way to enforce a disentangled representation is to hold different
axes of variation fixed during training [21]. Johnson et al. [14] combine a neural net likelihood
with a conjugate exponential family model for the latent variables. In this class of models, efficient
marginalisation over the latent variables can be performed by learning a projection onto the same
conjugate exponential family in the encoder. Here we propose a more general class of partially-
specified graphical models: probabilistic graphical models in which the modeller only needs specify
the exact relationship for some subset of the random variables in the model. Factors left undefined in
the model definition are then learned, parametrised by flexible neural networks. This provides the
ability to situate oneself at a particular point on a spectrum, by specifying precisely those axes of
variations (and their dependencies) we have information about or would like to extract, and learning
disentangled representations for them, while leaving the rest to be learned in an entangled manner.

A subclass of partially-specified models that is particularly common is that where we can obtain
supervision data for some subset of the variables. In practice, there is often variation in the data
which is (at least conceptually) easy to explain, and therefore annotate, whereas other variation is less
clear. For example, consider the MNIST dataset of handwritten digits: the images vary both in terms
of content (which digit is present), and style (how the digit is written), as is visible in the right-hand
side of Fig. 1. Having an explicit “digit” latent variable captures a meaningful and consistent axis of
variation, independent of style; using a partially-specified graphical model means we can define a
“digit” variable even while leaving unspecified the semantics of the different styles, and the process of
rendering a digit to an image. With unsupervised learning there is no guarantee that inference on a
model with 10 classes will induce factored latent representations with factors corresponding to the the
10 digits. However, given a small amount of labelled examples, this task becomes significantly easier.
Fundamentally, our approach conforms to the idea that well-defined notions of disentanglement
require specification of a task under which to measure it [4]. For example, when considering images
of people’s faces, we might wish to capture the person’s identity in one context, and the lighting
conditions on the faces in another, facial features in another, or combinations of these in yet other
contexts. Partially-specified models and weak supervision can be seen as a way to operationalise this
task-dependence directly into the learning objective.

In this paper we introduce a recipe for learning and inference in partially-specified models, a flexible
framework that learns disentangled representations of data by using graphical model structures to
encode constraints to interpret the data. We present this framework in the context of variational
autoencoders (VAEs), developing a generalised formulation of semi-supervised learning with DGMs
that enables our framework to automatically employ the correct factorisation of the objective for
any given choice of model and set of latents taken to be observed. In this respect our work extends
previous efforts to introduce supervision into variational autoencoders [18, 24, 32]. We introduce a
variational objective which is applicable to a more general class of models, allowing us to consider
graphical-model structures with arbitrary dependencies between latents, continuous-domain latents,
and those with dynamically changing dependencies. We provide a characterisation of how to compile
partially-supervised generative models into stochastic computation graphs, suitable for end-to-end
training. This approach allows us also amortise inference [7, 23, 29, 34], simultaneously learning
a network that performs approximate inference over representations at the same time we learn the
unknown factors of the model itself. We demonstrate the efficacy of our framework on a variety of
tasks, involving classification, regression, and predictive synthesis, including its ability to encode
latents of variable dimensionality.

2

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Figure 1: Semi-supervised learning in structured variational autoencoders, illustrated on MNIST
digits. Top-Left: Generative model. Bottom-Left: Recognition model. Middle: Stochastic com-
putation graph, showing expansion of each node to its corresponding sub-graph. Generative-model
dependencies are shown in blue and recognition-model dependencies are shown in orange. See
Section 2.2 for a detailed explanation. Right: learned representation.

2 Framework and Formulation

VAEs [17, 28] are a class of deep generative models that simultaneously train both a probabilistic
encoder and decoder for a elements of a data set D = {x1, . . .xN}. The central analogy is that
an encoding z can be considered a latent variable, casting the decoder as a conditional probability
density pθ(x|z). The parameters ηθ(z) of this distribution are the output of a deterministic neural
network with parameters θ (most commonly MLPs or CNNs) which takes z as input. By placing a
weak prior over z, the decoder defines a posterior and joint distribution pθ(z | x) ∝ pθ(x | z)p(z).

xn

zn θφ

N

Inference in VAEs can be performed using a variational method that approximates the
posterior distribution pθ(z | x) using an encoder qφ(z | x), whose parameters λφ(x) are
the output of a network (with parameters φ) that is referred to as an “inference network”
or a “recognition network”. The generative and inference networks, denoted by solid
and dashed lines respectively in the graphical model, are trained jointly by performing
stochastic gradient ascent on the evidence lower bound (ELBO) L(φ, θ;D) ≤ log pθ(D),

L(φ, θ;D) =
N∑

n=1

L(φ, θ;xn) =
N∑

n=1

Eqφ(z|xn)[log pθ(x
n | z) + log p(z)− log qφ(z|xn)]. (1)

Typically, the first term Eqφ(z|xn)[log pθ(xn | z)] is approximated by a Monte Carlo estimate and the
remaining two terms are expressed as a divergence −KL(qφ(z|xn)‖p(z)), which can be computed
analytically when the encoder model and prior are Gaussian.

In this paper, we will consider models in which both the generative model pθ(x,y, z) and the
approximate posterior qφ(y, z | x) can have arbitrary conditional dependency structures involving
random variables defined over a number of different distribution types. We are interested in defining
VAE architectures in which a subset of variables y are interpretable. For these variables, we assume
that supervision labels are available for some fraction of the data. The VAE will additionally retain
some set of variables z for which inference is performed in a fully unsupervised manner. This is in
keeping with our central goal of defining and learning in partially-specified models. In the running
example for MNIST, y corresponds to the classification label, whereas z captures all other implicit
features, such as the pen type and handwriting style.

This class of models is more general than the models in the work by Kingma et al. [18], who consider
three model designs with a specific conditional dependence structure. We also do not require p(y, z)
to be a conjugate exponential family model, as in the work by Johnson et al. [15]. To perform
semi-supervised learning in this class of models, we need to i) define an objective that is suitable to
general dependency graphs, and ii) define a method for constructing a stochastic computation graph
[30] that incorporates both the conditional dependence structure in the generative model and that of
the recognition model into this objective.

3

2.1 Objective Function

xn

yn

zn φ

θ

xm

ym

zm

N M

Previous work on semi-supervised learning for deep generative models [18]
defines an objective over N unsupervised data points D = {x1, . . . ,xN}
and M supervised data points Dsup = {(x1,y1), . . . , (xM ,yM)},

L(θ, φ;D,Dsup) =

N∑

n=1

L(θ, φ;xn) + γ

M∑

m=1

Lsup(θ, φ;xm,ym). (2)

Our model’s joint distribution factorises into unsupervised and supervised
collections of terms over D and Dsup as shown in the graphical model. The
standard variational bound on the joint evidence of all observed data (includ-
ing supervision) also factorises as shown in Eq. (2). As the factor corresponding to the unsupervised
part of the graphical model is exactly that as Eq. (1), we focus on the supervised term in Eq. (2),
expanded below, incorporating an additional weighted component as in Kingma et al. [18].

Lsup(θ, φ;xm,ym) = Eqφ(z|xm,ym)

[
log

pθ(x
m,ym, z)

qφ(z | xm,ym)

]
+ α log qφ(y

m | xm). (3)

Note that the formulation in Eq. (2) introduces an constant γ that controls the relative strength of
the supervised term. While the joint distribution in our model implicitly weights the two terms, in
situations where the relative sizes of D and Dsup are vastly different, having control over the relative
weights of the terms can help ameliorate such discrepancies.

This definition in Eq. (3) implicitly assumes that we can evaluate the conditional probability
qφ(z|x,y) and the marginal qφ(y|x) =

∫
dz qφ(y, z|x). This was indeed the case for the models

considered by Kingma et al. [18], which have a factorisation qφ(y, z|x) = qφ(z|x,y)qφ(y|x).
Here we will derive an estimator for Lsup that generalises to models in which qφ(y, z | x) can have
an arbitrary conditional dependence structure. For purposes of exposition, we will for the moment
consider the case where qφ(y, z | x) = qφ(y | x, z)qφ(z | x). For this factorisation, generating
samples zm,s ∼ qφ(z | xm,ym) requires inference, which means we can no longer compute a simple
Monte Carlo estimator by sampling from the unconditioned distribution qφ(z | xm). Moreover, we
also cannot evaluate the density qφ(z | xm,ym).

In order to address these difficulties, we re-express the supervised terms in the objective as

Lsup(θ, φ;xm,ym) = Eqφ(z|xm,ym)

[
log

p(xm,ym, z)

qφ(ym, z | xm)

]
+ (1 + α) log qφ(y

m | xm), (4)

which removes the need to evaluate qφ(z | xm,ym). We can then use (self-normalised) importance
sampling to approximate the expectation. To do so, we sample proposals zm,s ∼ qφ(z | xm) from
the unconditioned encoder distribution, and define the estimator

Eqφ(z|xm,ym)

[
log

pθ(x
m,ym, z)

qφ(ym, z | xm)

]
' 1

S

S∑

s=1

wm,s

Zm
log

pθ(x
m,ym, zm,s)

qφ(ym, zm,s | xm)
, (5)

where the unnormalised importance weights wm,s and normaliser Zm are defined as

wm,s :=
qφ(y

m, zm,s | xm)

qφ(zm,s | xm)
, Zm =

1

S

S∑

s=1

wm,s. (6)

To approximate log qφ(ym | xm), we use a Monte Carlo estimator of the lower bound that is normally
used in maximum likelihood estimation,

log qφ(y
m | xm) ≥ Eqφ(z|xm)

[
log

qφ(y
m, z | xm)

qφ(z | xm)

]
' 1

S

S∑

s=1

logwm,s, (7)

using the same samples zm,s and weights wm,s as in Eq. (5). When we combine the terms in Eqs. (5)
and (7), we obtain the estimator

L̂sup(θ, φ;xm,ym) :=
1

S

S∑

s=1

wm,s

Zm
log

pθ(x
m,ym, zm,s)

qφ(ym, zm,s | xm)
+ (1 + α) logwm,s. (8)

4

We note that this estimator applies to any conditional dependence structure. Suppose that we were to
define an encoder qφ(z2,y1, z1 | x) with factorisation qφ(z2 | y1, z1,x)qφ(y1 | z1,x)qφ(z1 | x).
If we propose z2 ∼ qφ(z2 | y1, z1,x) and z1 ∼ qφ(z1 | x), then the importance weights wm,s for
the estimator in Eq. (8) are defined as

wm,s :=
qφ(z

m,s
2 ,ym1 , z

m,s
1 | xm)

qφ(z
m,s
2 | ym1 , zm,s1 ,xm)qφ(z

m,s
1 | xm)

= qφ(y
m
1 | zm,s1 ,xm).

In general, the importance weights are simply the product of conditional probabilities of the supervised
variables y in the model. Note that this also applies to the models in Kingma et al. [18], whose
objective we can recover by taking the weights to be constants wm,s = qφ(y

m | xm).

We can also define an objective analogous to the one used in importance-weighted autoencoders [2],
in which we compute the logarithm of a Monte Carlo estimate, rather than the Monte Carlo estimate
of a logarithm. This objective takes the form

L̂sup,iw(θ, φ;xm,ym) := log

[
1

S

S∑

s=1

pθ(x
m,ym, zm,s)

qφ(zm,s | xm)

]
+ α log

[
1

S

S∑

s=1

wm,s

]
, (9)

which can be derived by moving the sums in Eq. (8) into the logarithms and applying the substitution
wm,s/qφ(y

m, zm,s | xm) = 1/qφ(z
m,s | xm).

2.2 Construction of the Stochastic Computation Graph

To perform gradient ascent on the objective in Eq. (8), we map the graphical models for pθ(x,y, z)
and qφ(y, z|x) onto a stochastic computation graph in which each stochastic node forms a sub-graph.
Figure 1 shows this expansion for the simple VAE for MNIST digits from [17]. In this model, y is a
discrete variable that represents the underlying digit, our latent variable of interest, for which we have
partial supervision data. An unobserved Gaussian-distributed variable z captures the remainder of the
latent information. This includes features such as the hand-writing style and stroke thickness. In the
generative model (Fig. 1 top-left), we assume a factorisation pθ(x,y, z) = pθ(x | y, z)p(y)p(z) in
which y and z are independent under the prior. In the recognition model (Fig. 1 bottom-left), we use
a conditional dependency structure qφ(y, z | x) = qφz (z | y,x)qφy (y|x) to disentangle the digit
label y from the handwriting style z (Fig. 1 right).

The generative and recognition model are jointly form a stochastic computation graph (Fig. 1 centre)
containing a sub-graph for each stochastic variable. These can correspond to fully supervised,
partially supervised and unsupervised variables. This example graph contains three types of sub-
graphs, corresponding to the three possibilities for supervision and gradient estimation:

• For the fully supervised variable x, we compute the likelihood p under the generative model, that
is pθ(x | y, z) = N (x ; ηθ(y, z)). Here ηθ(y, z) is a neural net with parameters θ that returns
the parameters of a normal distribution (i.e. a mean vector and a diagonal covariance).
• For the unobserved variable z, we compute both the prior probability p(z) = N (z ; ηz), and the

conditional probability qφ(z | x,y) = N (z ; λφz (x,y)). Here the usual reparametrisation is
used to sample z from qφ(z | x,y) by first sampling ε ∼ N (0, I) using the usual reparametrisa-
tion trick z = g(ε, λφ(x,y)).
• For the partially observed variable y, we also compute probabilities p(y) = Discrete(y; ηy) and
qφy (y|x) = Discrete(y;λφz (x)). The value y is treated as observed when available, and sampled
otherwise. In this particular example, we sample y from a qφy (y|x) using a Gumbel-softmax
[13, 25] relaxation of the discrete distribution.

The example in Fig. 1 illustrates a general framework for defining VAEs with arbitrary dependency
structures. We begin by defining a node for each random variable. For each node we then specify
a distribution type and parameter function η, which determines how the probability under the
generative model depends on the other variables in the network. This function can be a constant, fully
deterministic, or a neural network whose parameters are learned from the data. For each unsupervised
and semi-supervised variable we must additionally specify a function λ that returns the parameter
values in the recognition model, along with a (reparametrised) sampling procedure.

Given this specification of a computation graph, we can now compute the importance sampling
estimate in Eq. (8) by simply running the network forward repeatedly to obtain samples from qφ(·|λ)
for all unobserved variables. We then calculate pθ(x,y, z), qφ(y|x), qφ(y, z|x), and the importance

5

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, partially supervised with just 100 labels (out of
50000). We infer the style variable z and then vary the label y. (b) Exploration in style space with
label y held fixed and (2D) style z varied. Visual analogies for the SVHN data when (c) partially
supervised with just 1000 labels, and (d) fully supervised.

weight w, which is the joint probability of all semi-supervised variable for which labels are available.
This estimate can then be optimised with respect to the variables θ and φ to train the autoencoder.

3 Experiments

We evaluate our framework along a number of different axes pertaining to its ability to learn disen-
tangled representations through the provision of partial graphical-model structures for the latents
and weak supervision. In particular, we evaluate its ability to (i) function as a classifier/regressor for
particular latents under the given dataset, (ii) learn the generative model in a manner that preserves
the semantics of the latents with respect to the data generated, and (iii) perform these tasks, in a
flexible manner, for a variety of different models and data.

For all the experiments run, we choose architecture and parameters that are considered standard
for the type and size of the respective datasets. Where images are concerned (with the exception
of MNIST), we employ (de)convolutional architectures, and employ a standard GRU recurrence
in the Multi-MNIST case. For learning, we used AdaM [16] with a learning rate and momentum-
correction terms set to their default values. As for the mini batch sizes, they varied from 100-700
depending on the dataset being used and the sizes of the labelled subset Dsup. All of the above,
including further details of precise parameter values and the source code, including our PyTorch-
based library for specifying arbitrary graphical models in the VAE framework, is available at –
https://github.com/probtorch/probtorch.

3.1 MNIST and SVHN

We begin with an experiment involving a simple dependency structure, in fact the very same as that
in Kingma et al. [18], to validate the performance of our importance-sampled objective in the special
case where the recognition network and generative models factorise as indicated in Fig. 1(left), giving
us importance weights that are constant wm,s = qφ(y

m|xm). The model is tested on it’s ability to
classify digits and perform conditional generation on the MNIST and Google Street-View House
Numbers (SVHN) datasets. As Fig. 1(left) shows, the generative and recognition models have the
“digit” label, denoted y, partially specified (and partially supervised) and the “style” factor, denoted
z, assumed to be an unobserved (and unsupervised) variable.

Figure 2(a) and (c) illustrate the conditional generation capabilities of the learned model, where we
show the effect of first transforming a given input (leftmost column) into the disentangled latent
space, and with the style latent variable fixed, manipulating the digit through the generative model to
generate data with expected visual characteristics. Note that both these results were obtained with
partial supervision – 100 (out of 50000) labelled data points in the case of MNIST and 1000 (out
of 70000) labelled data points in the case of SVHN. The style latent variable z was taken to be a
diagonal-covariance Gaussian of 10 and 15 dimensions respectively. Figure 2(d) shows the same for
SVHN with full supervision. Figure 2(b) illustrates the alternate mode of conditional generation,
where the style latent, here taken to be a 2D Gaussian, is varied with the digit held fixed.

Next, we evaluate our model’s ability to effectively learn a classifier from partial supervision. We
compute the classification error on the label-prediction task on both datasets, and the results are

6

https://github.com/probtorch/probtorch

0

20

40

60 MNIST
M = 100
M = 600
M = 1000
M = 3000

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60 SVHN
M = 1000
M = 3000

0.0 0.2 0.4 0.6 0.8 1.0

Supervision Rate ()
0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
E

rr
or

 (%
)

Effect of Supervision Rate ()

M
N

IS
T

N
=

50
00
0

M Ours M2 [18]

100 9.71 (± 0.91) 11.97 (± 1.71)
600 3.84 (± 0.86) 4.94 (± 0.13)

1000 2.88 (± 0.79) 3.60 (± 0.56)
3000 1.57 (± 0.93) 3.92 (± 0.63)

SV
H

N
N

=
70
00
0 M Ours M1+M2 [18]

1000 38.91 (± 1.06) 36.02 (± 0.10)
3000 29.07 (± 0.83) —

Figure 3: Right: Classification error rates for different labelled-set sizes M over multiple runs,
with supervision rate ρ = γM

N+γM , γ = 1. For SVHN, we compare against a multi-stage process
(M1+M2) [18], where our model only uses a single stage. Left: Classification error over different
labelled set sizes and supervision rates for MNIST (top) and SVHN (bottom). Here, scaling of the
classification objective is held fixed at α = 50 (MNIST) and α = 70 (SVHN). Note that for sparsely
labelled data (M � N), a modicum of over-representation (γ > 1) helps improve generalisation
with better performance on the test set. Conversely, too much over-representation leads to overfitting.

reported in the table in Fig. 3. Note that there are a few minor points of difference in the setup
between our method and those we compare against [18]. We always run our models directly on the
data, with no pre-processing or pre-learning on the data. Thus, for MNIST, we compare against
model M2 from the baseline which does just the same. However, for SVHN, the baseline method
does not report errors for the M2 model; only the two-stage M1+M2 model which involves a separate
feature-extraction step on the data before learning a semi-supervised classifier.

As the results indicate, our model and objective does indeed perform on par with the setup considered
in Kingma et al. [18], serving as basic validation of our framework. We note however, that from
the perspective of achieving the lowest possible classification error, one could adopt any number of
alternate factorisations [24] and innovations in neural-network architectures [27, 33].

Supervision rate: As discussed in Section 2.1, we formulate our objective to provide a handle
on the relative weight between the supervised and unsupervised terms. For a given unsupervised
set size N , supervised set size M , and scaling term γ, the relative weight is ρ = γM/(N + γM).
Figure 3 shows exploration of this relative weight parameter over the MNIST and SVHN datasets
and over different supervised set sizes M . Each line in the graph measures the classification error
for a given M , over ρ, starting at γ = 1, i.e. ρ =M/(N +M). In line with Kingma et al.[18], we
use α = 0.1/ρ. When the labelled data is very sparse (M � N), over-representing the labelled
examples during training can help aid generalisation by improving performance on the test data. In
our experiments, for the most part, choosing this factor to be ρ =M/(N +M) provides good results.
However, as is to be expected, over-fitting occurs when ρ is increased beyond a certain point.

3.2 Intrinsic Faces

We next move to a more complex domain involving generative models of faces. As can be seen in the
graphical models for this experiment in Fig. 4, the dependency structures employed here are more
complex in comparison to those from the previous experiment. Here, we use the “Yale B” dataset [6]
as processed by Jampani et al. [12] for the results in Fig. 5. We are interested in showing that our
model can learn disentangled representations of identity and lighting and evaluate it’s performance
on the tasks of (i) classification of person identity, and (ii) regression for lighting direction.

Note that our generative model assumes no special structure – we simply specify a model where all
latent variables are independent under the prior. Previous work [12] assumed a generative model
with latent variables identity i, lighting l, shading s, and reflectance r, following the relationship
(n · l)× r + ε for the pixel data. Here, we wish to demonstrate that our generative model still learns
the correct relationship over these latent variables, by virtue of the structure in the recognition model
and given (partial) supervision.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,

7

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk−1
K

Generative Model Recognition Model Generative Model Recognition Model

Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.
Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [12]
(plot asymptotes)

≈ 30 ≈ 10

Figure 5: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ρ = 0.5,
and α = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . ,K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [11].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . ,K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically
set xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around
the constituent digits as supervision, which must be taken into account when learning the affine
transformations that decompose a multi-MNIST image into its constituent MNIST-like images. This
model design is similar to the one used in DRAW [10], recurrent VAEs [3], and AIR [5].

8

Input Reconstruction Decomposition

M
M+N Count Error (%)

w/o MNIST w/ MNIST

0.1 85.45 (± 5.77) 76.33 (± 8.91)
0.5 93.27 (± 2.15) 80.27 (± 5.45)
1.0 99.81 (± 1.81) 84.79 (± 5.11)

Figure 6: Left: Example input multi-MNIST images and reconstructions. Top-Right: Decomposition
of Multi-MNIST images into constituent MNIST digits. Bottom-Right: Count accuracy over
different supervised set sizes M for given dataset size M +N = 82000.

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.
Here, the generative model presumes the availability of individual MNIST-digit images, generating
combinations under sampled affine transformations. In the second experiment, we extend the above
model to now also incorporate the same pre-trained MNIST model from the previous section, which
allows the generative model to sample MNIST-digit images, while also being able to predict the
underlying digits. This also demonstrates how we can leverage compositionality of models: when
a complex model has a known simpler model as a substructure, the simpler model and its learned
weights can be dropped in directly.

The count accuracy errors across different supervised set sizes, reconstructions for a random set of
inputs, and the decomposition of a given set of inputs into their constituent individual digits, are
shown in Fig. 6. All reconstructions and image decompositions shown correspond to the nested-model
configuration. We observe that not only are we able to reliably infer the counts of the digits in the
given images, we are able to simultaneously reconstruct the inputs as well as its constituent parts.

4 Discussion and Conclusion
In this paper we introduce a framework for learning disentangled representations of data using
partially-specified graphical model structures and semi-supervised learning schemes in the domain of
variational autoencoders (VAEs). This is accomplished by defining hybrid generative models which
incorporate both structured graphical models and unstructured random variables in the same latent
space. We demonstrate the flexibility of this approach by applying it to a variety of different tasks
in the visual domain, and evaluate its efficacy at learning disentangled representations in a semi-
supervised manner, showing strong performance. Such partially-specified models yield recognition
networks that make predictions in an interpretable and disentangled space, constrained by the structure
provided by the graphical model and the weak supervision.

The framework is implemented as a PyTorch library [26], enabling the construction of stochastic
computation graphs which encode the requisite structure and computation. This provides another
direction to explore in the future — the extension of the stochastic computation graph framework to
probabilistic programming [9, 35, 36]. Probabilistic programs go beyond the presented framework to
permit more expressive models, incorporating recursive structures and higher-order functions. The
combination of such frameworks with neural networks has recently been studied in Le et al. [23] and
Ritchie et al. [29], indicating a promising avenue for further exploration.

Acknowledgements
This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC grant
Seebibyte EP/M013774/1, and EPSRC/MURI grant EP/N019474/1. BP & FW were supported by
The Alan Turing Institute under the EPSRC grant EP/N510129/1. JWM, FW & NDG were supported
under DARPA PPAML through the U.S. AFRL under Cooperative Agreement FA8750-14-2-0006.
JWM was additionally supported through startup funds provided by Northeastern University. FW was
additionally supported by Intel and DARPA D3M, under Cooperative Agreement FA8750-17-2-0093.

9

References

[1] Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D Manning. Modeling biological processes for reading
comprehension. In EMNLP, 2014.

[2] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519, 2015.

[3] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. In Advances in neural information
processing systems, pages 2980–2988, 2015.

[4] Christopher K. I. Williams Cian Eastwood. A framework for the quantitaive evaluation of
disentangled representations. In Proceedings of the Workshop on Learning Disentangled
Representaions: from Perception to Control, at NIPS 2017, 2017.

[5] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, and
Geoffrey. E Hinton. Attend, infer, repeat: Fast scene understanding with generative models.
arXiv preprint arXiv:1603.08575, 2016.

[6] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many: Illumination cone
models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach.
Intelligence, 23(6):643–660, 2001.

[7] Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In
CogSci, 2014.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

[9] ND Goodman, VK Mansinghka, D Roy, K Bonawitz, and JB Tenenbaum. Church: A language
for generative models. In Uncertainty in Artificial Intelligence, pages 220–229, 2008.

[10] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. Draw: A
recurrent neural network for image generation. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pages 1462–1471, 2015.

[11] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In
Advances in Neural Information Processing Systems, pages 2017–2025, 2015.

[12] Varun Jampani, S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, and John Winn. Consensus
message passing for layered graphical models. In International Conference on Artificial
Intelligence and Statistics, pages 425–433, 2015.

[13] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[14] Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast
inference. In Advances in Neural Information Processing Systems, pages 2946–2954, 2016.

[15] Matthew J. Johnson, David K. Duvenaud, Alex B. Wiltschko, Sandeep R. Datta, and Ryan P.
Adams. Composing graphical models with neural networks for structured representations and
fast inference. In Advances in Neural Information Processing Systems, 2016.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[17] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the
2nd International Conference on Learning Representations, 2014.

10

http://arxiv.org/abs/1412.6980

[18] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised learning with deep generative models. In Advances in Neural Information Processing
Systems, pages 3581–3589, 2014.

[19] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[20] Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture:
A probabilistic programming language for scene perception. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4390–4399, 2015.

[21] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolu-
tional inverse graphics network. In Advances in Neural Information Processing Systems, pages
2530–2538, 2015.

[22] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal Statistical
Society. Series B (Methodological), pages 157–224, 1988.

[23] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal
probabilistic programming. arXiv preprint arXiv:1610.09900, 2016.

[24] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models.
arXiv preprint arXiv:1602.05473, 2016.

[25] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[26] PyTorch. PyTorch. http://pytorch.org/, 2017. Accessed: 2017-11-4.

[27] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and Raiko. T. Semi-supervised learning with
ladder networks. In Advances in Neural Information Processing Systems, pages 3532–3540,
2015.

[28] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of The 31st International
Conference on Machine Learning, pages 1278–1286, 2014.

[29] Daniel Ritchie, Paul Horsfall, and Noah D Goodman. Deep amortized inference for probabilistic
programs. arXiv preprint arXiv:1610.05735, 2016.

[30] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation
using stochastic computation graphs. In Advances in Neural Information Processing Systems,
pages 3510–3522, 2015.

[31] N. Siddharth, A. Barbu, and J. M. Siskind. Seeing what you’re told: Sentence-guided activity
recognition in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 732–39, June 2014.

[32] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in Neural Information Processing Systems,
pages 3465–3473, 2015.

[33] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder variational
autoencoders. In Advances in Neural Information Processing Systems, 2016.

[34] Andreas Stuhlmüller, Jacob Taylor, and Noah Goodman. Learning stochastic inverses. In
Advances in neural information processing systems, pages 3048–3056, 2013.

[35] David Wingate, Andreas Stuhlmueller, and Noah D Goodman. Lightweight implementations
of probabilistic programming languages via transformational compilation. In International
Conference on Artificial Intelligence and Statistics, pages 770–778, 2011.

[36] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to prob-
abilistic programming inference. In Artificial Intelligence and Statistics, pages 1024–1032,
2014.

11

http://pytorch.org/

