3,862 research outputs found

    OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal Regularization

    Full text link
    Exploring the potential of GANs for unsupervised disentanglement learning, this paper proposes a novel GAN-based disentanglement framework with One-Hot Sampling and Orthogonal Regularization (OOGAN). While previous works mostly attempt to tackle disentanglement learning through VAE and seek to implicitly minimize the Total Correlation (TC) objective with various sorts of approximation methods, we show that GANs have a natural advantage in disentangling with an alternating latent variable (noise) sampling method that is straightforward and robust. Furthermore, we provide a brand-new perspective on designing the structure of the generator and discriminator, demonstrating that a minor structural change and an orthogonal regularization on model weights entails an improved disentanglement. Instead of experimenting on simple toy datasets, we conduct experiments on higher-resolution images and show that OOGAN greatly pushes the boundary of unsupervised disentanglement.Comment: AAAI 202

    Lifelong Generative Modeling

    Full text link
    Lifelong learning is the problem of learning multiple consecutive tasks in a sequential manner, where knowledge gained from previous tasks is retained and used to aid future learning over the lifetime of the learner. It is essential towards the development of intelligent machines that can adapt to their surroundings. In this work we focus on a lifelong learning approach to unsupervised generative modeling, where we continuously incorporate newly observed distributions into a learned model. We do so through a student-teacher Variational Autoencoder architecture which allows us to learn and preserve all the distributions seen so far, without the need to retain the past data nor the past models. Through the introduction of a novel cross-model regularizer, inspired by a Bayesian update rule, the student model leverages the information learned by the teacher, which acts as a probabilistic knowledge store. The regularizer reduces the effect of catastrophic interference that appears when we learn over sequences of distributions. We validate our model's performance on sequential variants of MNIST, FashionMNIST, PermutedMNIST, SVHN and Celeb-A and demonstrate that our model mitigates the effects of catastrophic interference faced by neural networks in sequential learning scenarios.Comment: 32 page

    Hyperprior Induced Unsupervised Disentanglement of Latent Representations

    Full text link
    We address the problem of unsupervised disentanglement of latent representations learnt via deep generative models. In contrast to current approaches that operate on the evidence lower bound (ELBO), we argue that statistical independence in the latent space of VAEs can be enforced in a principled hierarchical Bayesian manner. To this effect, we augment the standard VAE with an inverse-Wishart (IW) prior on the covariance matrix of the latent code. By tuning the IW parameters, we are able to encourage (or discourage) independence in the learnt latent dimensions. Extensive experimental results on a range of datasets (2DShapes, 3DChairs, 3DFaces and CelebA) show our approach to outperform the β\beta-VAE and is competitive with the state-of-the-art FactorVAE. Our approach achieves significantly better disentanglement and reconstruction on a new dataset (CorrelatedEllipses) which introduces correlations between the factors of variation.Comment: AAAI-201
    corecore