477,415 research outputs found

    “Dust in the wind...”, deep learning application to wind energy time series forecasting

    Get PDF
    To balance electricity production and demand, it is required to use different prediction techniques extensively. Renewable energy, due to its intermittency, increases the complexity and uncertainty of forecasting, and the resulting accuracy impacts all the different players acting around the electricity systems around the world like generators, distributors, retailers, or consumers. Wind forecasting can be done under two major approaches, using meteorological numerical prediction models or based on pure time series input. Deep learning is appearing as a new method that can be used for wind energy prediction. This work develops several deep learning architectures and shows their performance when applied to wind time series. The models have been tested with the most extensive wind dataset available, the National Renewable Laboratory Wind Toolkit, a dataset with 126,692 wind points in North America. The architectures designed are based on different approaches, Multi-Layer Perceptron Networks (MLP), Convolutional Networks (CNN), and Recurrent Networks (RNN). These deep learning architectures have been tested to obtain predictions in a 12-h ahead horizon, and the accuracy is measured with the coefficient of determination, the R² method. The application of the models to wind sites evenly distributed in the North America geography allows us to infer several conclusions on the relationships between methods, terrain, and forecasting complexity. The results show differences between the models and confirm the superior capabilities on the use of deep learning techniques for wind speed forecasting from wind time series data.Peer ReviewedPostprint (published version

    Cloud-based or On-device: An Empirical Study of Mobile Deep Inference

    Full text link
    Modern mobile applications are benefiting significantly from the advancement in deep learning, e.g., implementing real-time image recognition and conversational system. Given a trained deep learning model, applications usually need to perform a series of matrix operations based on the input data, in order to infer possible output values. Because of computational complexity and size constraints, these trained models are often hosted in the cloud. To utilize these cloud-based models, mobile apps will have to send input data over the network. While cloud-based deep learning can provide reasonable response time for mobile apps, it restricts the use case scenarios, e.g. mobile apps need to have network access. With mobile specific deep learning optimizations, it is now possible to employ on-device inference. However, because mobile hardware, such as GPU and memory size, can be very limited when compared to its desktop counterpart, it is important to understand the feasibility of this new on-device deep learning inference architecture. In this paper, we empirically evaluate the inference performance of three Convolutional Neural Networks (CNNs) using a benchmark Android application we developed. Our measurement and analysis suggest that on-device inference can cost up to two orders of magnitude greater response time and energy when compared to cloud-based inference, and that loading model and computing probability are two performance bottlenecks for on-device deep inferences.Comment: Accepted at The IEEE International Conference on Cloud Engineering (IC2E) conference 201
    • …
    corecore