1,582 research outputs found

    DTW-Global Constraint Learning Using Tabu Search Algorithm

    Get PDF
    AbstractMany methods have been proposed to measure the similarity between time series data sets, each with advantages and weaknesses. It is to choose the most appropriate similarity measure depending on the intended application domain and data considered. The performance of machine learning algorithms depends on the metric used to compare two objects. For time series, Dynamic Time Warping (DTW) is the most appropriate distance measure used. Many variants of DTW intended to accelerate the calculation of this distance are proposed. The distance learning is a subject already well studied. Indeed Data Mining tools, such as the algorithm of k-Means clustering, and K-Nearest Neighbor classification, require the use of a similarity/distance measure. This measure must be adapted to the application domain. For this reason, it is important to have and develop effective methods of computation and algorithms that can be applied to a large data set integrating the constraints of the specific field of study. In this paper a new hybrid approach to learn a global constraint of DTW distance is proposed. This approach is based on Large Margin Nearest Neighbors classification and Tabu Search algorithm. Experiments show the effectiveness of this approach to improve time series classification results

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    Down-Sampling coupled to Elastic Kernel Machines for Efficient Recognition of Isolated Gestures

    Get PDF
    In the field of gestural action recognition, many studies have focused on dimensionality reduction along the spatial axis, to reduce both the variability of gestural sequences expressed in the reduced space, and the computational complexity of their processing. It is noticeable that very few of these methods have explicitly addressed the dimensionality reduction along the time axis. This is however a major issue with regard to the use of elastic distances characterized by a quadratic complexity. To partially fill this apparent gap, we present in this paper an approach based on temporal down-sampling associated to elastic kernel machine learning. We experimentally show, on two data sets that are widely referenced in the domain of human gesture recognition, and very different in terms of quality of motion capture, that it is possible to significantly reduce the number of skeleton frames while maintaining a good recognition rate. The method proves to give satisfactory results at a level currently reached by state-of-the-art methods on these data sets. The computational complexity reduction makes this approach eligible for real-time applications.Comment: ICPR 2014, International Conference on Pattern Recognition, Stockholm : Sweden (2014
    • …
    corecore