13 research outputs found

    Pac-Learning Recursive Logic Programs: Efficient Algorithms

    Full text link
    We present algorithms that learn certain classes of function-free recursive logic programs in polynomial time from equivalence queries. In particular, we show that a single k-ary recursive constant-depth determinate clause is learnable. Two-clause programs consisting of one learnable recursive clause and one constant-depth determinate non-recursive clause are also learnable, if an additional ``basecase'' oracle is assumed. These results immediately imply the pac-learnability of these classes. Although these classes of learnable recursive programs are very constrained, it is shown in a companion paper that they are maximally general, in that generalizing either class in any natural way leads to a computationally difficult learning problem. Thus, taken together with its companion paper, this paper establishes a boundary of efficient learnability for recursive logic programs.Comment: See http://www.jair.org/ for any accompanying file

    Pac-learning Recursive Logic Programs: Negative Results

    Full text link
    In a companion paper it was shown that the class of constant-depth determinate k-ary recursive clauses is efficiently learnable. In this paper we present negative results showing that any natural generalization of this class is hard to learn in Valiant's model of pac-learnability. In particular, we show that the following program classes are cryptographically hard to learn: programs with an unbounded number of constant-depth linear recursive clauses; programs with one constant-depth determinate clause containing an unbounded number of recursive calls; and programs with one linear recursive clause of constant locality. These results immediately imply the non-learnability of any more general class of programs. We also show that learning a constant-depth determinate program with either two linear recursive clauses or one linear recursive clause and one non-recursive clause is as hard as learning boolean DNF. Together with positive results from the companion paper, these negative results establish a boundary of efficient learnability for recursive function-free clauses.Comment: See http://www.jair.org/ for any accompanying file

    PAC-learning geometrical figures

    Get PDF

    Computational learning theory : new models and algorithms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1989.Includes bibliographical references (leaves 116-120).by Robert Hal Sloan.Ph.D

    Proceedings of the Fifth Meeting on Mathematics of Language : MOL5

    Get PDF

    Proceedings of the Fifth Meeting on Mathematics of Language : MOL5

    Get PDF

    Combined optimization algorithms applied to pattern classification

    Get PDF
    Accurate classification by minimizing the error on test samples is the main goal in pattern classification. Combinatorial optimization is a well-known method for solving minimization problems, however, only a few examples of classifiers axe described in the literature where combinatorial optimization is used in pattern classification. Recently, there has been a growing interest in combining classifiers and improving the consensus of results for a greater accuracy. In the light of the "No Ree Lunch Theorems", we analyse the combination of simulated annealing, a powerful combinatorial optimization method that produces high quality results, with the classical perceptron algorithm. This combination is called LSA machine. Our analysis aims at finding paradigms for problem-dependent parameter settings that ensure high classifica, tion results. Our computational experiments on a large number of benchmark problems lead to results that either outperform or axe at least competitive to results published in the literature. Apart from paxameter settings, our analysis focuses on a difficult problem in computation theory, namely the network complexity problem. The depth vs size problem of neural networks is one of the hardest problems in theoretical computing, with very little progress over the past decades. In order to investigate this problem, we introduce a new recursive learning method for training hidden layers in constant depth circuits. Our findings make contributions to a) the field of Machine Learning, as the proposed method is applicable in training feedforward neural networks, and to b) the field of circuit complexity by proposing an upper bound for the number of hidden units sufficient to achieve a high classification rate. One of the major findings of our research is that the size of the network can be bounded by the input size of the problem and an approximate upper bound of 8 + √2n/n threshold gates as being sufficient for a small error rate, where n := log/SL and SL is the training set

    Learning and Example Selection for Object and Pattern Detection

    Get PDF
    This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems
    corecore