
Computational Learning Theory: New Models and

Algorithms

by

Robert Hal Sloan

S.M. EECS, Massachusetts Institute of Technology (1986)
B.S. Mathematics, Yale University (1983)

Submitted to the Department- of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1989

@ Robert Hal Sloan, 1989. All rights reserved

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electrical Engineering and Computer Science

May 23, 1989

Certified by
Ronald L. Rivest

Professor of Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Abstract

In the past several years, there has been a surge of interest in computational learning
theory-the formal (as opposed to empirical) study of learning algorithms. One major
cause for this interest was the model of probably approximately correct learning, or
pac learning, introduced by Valiant in 1984.

This thesis begins by presenting a new learning algorithm for a particular problem
within that model: learning submodules of the free Z-module Zk. We prove that this
algorithm achieves probable approximate correctness, and indeed, that it is within a
log log factor of optimal in a related, but more stringent model of learning, on-line
mistake bounded learning.

We then proceed to examine the influence of noisy data on pac learning algorithms
in general. Previously it has been shown that it is possible to tolerate large amounts
of random classification noise, but only a very small amount of a very malicious sort
of noise. We show that similar results can be obtained for models of noise in between
the previously studied models: a large amount of malicious classification noise can be
tolerated, but only a small amount of random attribute noise.

Next, we overcome a major limitation of the pac learning model by introducing
a variant model with a more powerful teacher. We show how to learn any concept
representable as a boolean function, with the help of a teacher who breaks the concept
into subconcepts and teaches one subconcept per lesson. The learner outputs not the
unknown boolean circuit, but rather a program which, on a given input, either produces
the same answer as the unknown boolean circuit would, or else says "I don't know."
Thus, unlike many learning programs, the output of this learning procedure is reliable.
Furthermore, with high probability the output program is nearly always useful in that
it says "I don't know" on only a small fraction of the domain.

Finally, we look at a new model for an older learning problem, inductive inference.
This new model combines certain features of the traditional model of Gold for inductive
inference together with the concern of the Valiant model for efficient computation and
also with notions of Bayesianism. The result is a model that captures certain qualitative
aspects of the classic scientific method.

Keywords: Machine learning, computational learning theory, concept learning, noise,
inductive inference, scientific method.

Thesis supervisor: Ronald L. Rivest.
Title: Professor of Computer Science.

Acknowledgments

My first and greatest thanks go to my advisor, Ron Rivest. Ron was a pleasure to

work with throughout my time at MIT, and much of this thesis was joint work with

him. Whenever I was stuck on a problem, Ron had new approaches to suggest. His

approach would always be some clever idea that I wished I had thought of; moreover,

his clever idea very often solved the problem. In particular, when I was stymied by

the problem of learning by subconcepts discussed in Chapter 5, it was Ron who said,

"Well, why not just keep all the possibilities for the right function?"

I was also fortunate to get to work with Manfred Warmuth and David Helmbold.

The results of Chapter 3 were joint work with them. I would like to thank the two of

them both for their gracious permission to reproduce that work here, and for the fun I

had working with them. More generally, I would like to thank both Manfred and David

Haussler for inviting me to visit U. C. Santa Cruz in the summer of 1988, where I had

many fruitful technical conversations with Manfred and both Davids.

Several people helped me proofread and edit this document. Ron Rivest was ex-

tremely helpful in this activity. Additionally, careful proofreading of parts of this thesis

by Rob Gross, Maury Neiberg, and Manfred Warmuth resulted in numerous small im-

provements in the text.

Finally, I want to acknowledge the funding agencies without whom this sort of

research would not occur. I was supported while writing this thesis by an NSF graduate

fellowship, and received additional support from NSF grant DCR-8607494, ARO Grant

DAAL03-86-K-0171, and the Siemens Corporation.

Contents

1 Introduction 8

1.1 Prologue: An afternoon stroll 8

1.2 An introduction to learning theory 9

1.2.1 W hat is learned 10

1.2.2 From what is it learned 11

1.2.3 What a priori knowledge does the learner have 11

1.2.4 How is what is learned represented 12

1.2.5 By what method is it learned 12

1.2.6 How well is it learned 12

1.2.7 How efficiently is it learned 14

1.3 Overview of remaining chapters 15

2 Pac

2.1

2.2

2.3

2.4

2.5

learning

Introduction

Pac learning

Discussion of the definition

An example of pac learning

Some definitions and technical details

2.5.1 Asymptotics

17

... 17

.. 18

. 20

... 2 1

. 22

... 22

2.5.2 Method of sampling

2.5.3 Samples and consistency .

2.5.4 Variations on pac learning . . .

2.6 Sufficient conditions for pac learnability

2.6.1 Occam algorithms

2.6.2 VC dimension

3 A learning algorithm for submodules

3.1 Introduction

3.2 Mistake bounded learning

3.3 Learning submodules . . .

3.3.1 The algorithm SM

3.3.2 Running time . . .

3.3.3 Mistake bound . .

3.3.4 Special case: k = 1

3.3.5 Generalizations . .

3.4 Applications of modules .

3.4.1 Abelian groups .

3.4.2 Some commutative languages

4 Learning from noisy data

4.1 Introduction

4.2 Notation

4.3 Main results................

4.3.1 Attribute noise

4.3.2 Misclassification noise

5 Learning concepts reliably and usefully

5

32

32

53

53

54

57

57

60

.

5.1 Introduction

5.1.1

5.1.2

Hierarchical lea

A new variatio:

arning

n on the Valiant model .

.5.2 How to learn: sketch

5.2.1 Notation

5.2.2 An easy but trivial way to learn . . .

5.2.3 High level view of our solution

5.3 Detailed specification of our learning protocol

5.3.1 Learning y

5.3.2 Learning the target concept

5.3.3 Removing the circuit size as an input

5.4 N oise .

5.4.1 Classification noise

5.4.2 Malicious noise

5.5 Summary and conclusions

6 A different model of learning

6.1 Introduction

6.2 Subjective probabilities

6.3 The M odel

6.3.1 Basic Notation and Assumptions

6.3.2 The Scientist Makes Progress

6.3.3 How Long Will Science Take?

6.3.4 How the Scientist Updates His Knowledge

6.3.5 An Example

6.4' Our Inference Procedures

6.4.1 General Assumptions

6

91

91

93

94

94

94

95

96

97

98

99

.

.

.

6.4.2 Optimization Criteria........................ 99

6.4.3 Menus of Options 100

6.5 Inference procedure 1: Maximizing the weight of refuted theories 101

6.5.1 A Simple Menu of Options 101

6.5.2 An Expanded Menu of Options 102

6.5.3 Behavior of this Inference Procedure 104

6.6 Inference procedure 2: A minimum entropy approach 106

6.6.1 Behavior of this Inference Procedure 107

6.7 Inference procedure 3: Making the best theory good 109

6.7.1 Behavior of this Inference Procedure 110

6.8 An optimality result 112

6.8.1 The optimal refutation rate 112

6.8.2 How our procedures compare to the optimum 113

6.9 Conclusions for Chapter 6 114

7 Final remarks 115

Chapter 1

Introduction

Learning is not attained by chance, it must be sought

for with ardor and attended to with diligence.

-ABIGAIL ADAMS, Letter to John Quincy Adams

1.1 Prologue: An afternoon stroll

It is a bright, sunny afternoon. I take my robot out for a walk with me. We stop and

sit down on a bench in a busy part of town. For every person who walks by us I say

to my robot either, "That's a male," or "That's not a male," as the case may be. We

stay quite some time, and eventually go home.

The following afternoon the weather is the same, and we go back to the same bench.

This time, for every person who walks by, my robot says to me either "That's a male,"

or "That's not a male." My robot is correct ninety-six percent of the time.

It seems fair to say that my robot has learned the concept male, or at least a close

approximation of that concept. One of the main subjects of this thesis will be what

algorithms a robot might use to accomplish such learning.

1.2 An introduction to learning theory

Formally, the subject of this thesis is computational learning theory. For our pur-

poses, learning means induction. The task of a learner is to sample some portion of

the world, or whatever more limited domain may be under consideration, and come

to some conclusion about the nature of the entire domain. What distinguishes compu-

tational learning theory is that one of the efficiency issues that we care about is how

much computation time the learner uses. Our goal is twofold: we want to specify in-

teresting formal models of the problem of learning, and we want to present algorithms

for achieving learning within these models.

All of the problems we study in this thesis can be fit into the following broad

pattern. There is some universe of objects that is under consideration. We call this

set the instance space or the domain. The domain might be the set of points in the

real plane, bit vectors, the set of all the fish in the Boston Aquarium, or the set of

all human beings on earth. The elements of the domain are called instances. These

instances are split into two categories: positive instances and negative instances. The

set of positive instances is called the target concept. Our learner receives as input a

sample of instances with labels that tell whether they are positive instances or negative

instances. We call such labeled instances examples. The goal of the learner is to to find

some rule which distinguishes positive instances from negative instances.

For instance, in the example given above in the Prologue, the domain is the set of

all people, and the positive instances are male people. In that case I did not demand

that the learner come up with a completely accurate rule for classifying people; I was

happy with a good approximation.

There are several issues we must consider before we have posed a well specified

learning problem. In particular, Rivest [46] suggests that (at least) the following seven

questions must be answered in order to specify a learning problem.

1. What is being learned?

2. From what is it learned?

3. What a priori knowledge does the learner begin with?

4. How is what is learned represented?

5. By what method is it learned?

6. How well is it learned?

7. How efficiently is it learned?

We now briefly examine each of these questions in turn.

1.2.1 What is learned

There are many different domains one may study learning for. One might be interested

in learning about people or maps or nuclear particles. This thesis is a theoretical

work, and we examine exclusively abstract mathematical domains such as bit vectors,

Euclidean n-space, and k-tuples of integers. We study these domains both because

they are interesting in their own right, and in the belief that they are rich enough to

form good mathematical models of real world problems.

For instance, the robot discussed in the Prologue presumably would represent people

as a feature vector which includes (at least) real, integer, and boolean valued compo-

nents. The problem of choosing a good representation is both fascinating and difficult-

indeed, it is one of the central problems of Artificial Intelligence-but it falls outside

the scope of this thesis.

1.2.2 From what is it learned

The data our learner gets consists of labeled instances. As noted above, these instances

come from various abstract mathematical domains. We generally ignore the details of

how these instances are represented, and just assume some reasonable fixed encoding

scheme.

We are, however, very concerned with the issue of how training examples are chosen

from the domain. If the examples are chosen to be extremely helpful, then philosophi-

cally one might object that what is going on is programming rather than learning. A

more practical objection is that we now have the problem of finding a teacher capable

of picking out such extremely helpful examples. On the other hand, if the examples

are not somewhat representative of the whole domain, then the learning task may be

infeasible.

Another issue that sometimes arises is whether the learner is given both positive and

negative training examples or only positive examples. Which is more natural depends

on the domain. In the case of learning to distinguish male people, both positive and

negative training instances would presumably be available. On the other hand, in the

case of learning to distinguish well formed English sentences from nonsense sounds,

only positive instances might be available.

We are also interested in what happens when there is some noise in the training

data. For obvious reasons we prefer learning algorithms that are robust against some

amount of noise.

1.2.3 What a priori knowledge does the learner have

Our learner does not necessarily begin its' work in a state of total ignorance. For

instance, we often help the learner by telling it ahead of time that the target concept

'In this thesis learners, robots, and learning algorithms will be referred to by the pronoun "it."

comes from some particular class of concepts. (More formally, we design learning

algorithms that are only guaranteed to work on the assumption that the target concept

comes from some particular class.) Some limiting of the class of possible concepts is

clearly necessary. If any subset of the instance space could be the target concept, and

if all such subsets were equally likely, then the learner would have no basis whatsoever

for performing its induction.

Another sort of initial knowledge a learner may have consists of a priori probabilities

of the truth of various propositions such as "Concept c is the target concept."

1.2.4 How is what is learned represented

In some cases we are happy if the learner outputs any representation of the target

concept. Sometimes, however, we further complicate the learner's task by requiring

that its output be in some particular form. In particular, when it is known a priori

that the target concept is representable in some special form (for instance, a boolean

formula in 3DNF), we may require that the learner's output also be in that form.

1.2.5 By what method is it learned

The answers to the previous questions determine a learning problem. Our goal is then

to find a solution to that problem: an algorithm that learns according to the definition

of learning given by our answers to the previous questions.

The goal of computational learning theory in general, and this thesis in particular, is

to pose interesting learning problems, and to find algorithms that solve those problems.

1.2.6 How well is it learned

A learning algorithm is a proposed solution to a problem in learning. Having proposed

a solution, one must next ask how good that solution is.

Two very different notions of learning well have been studied. In one, generally

called inductive inference, the learner is given a presentation of examples one at a time

indefinitely, and its goal is to converge in the limit to the correct rule for classifying

instances. Inductive inference was first studied by Gold [14], and it has received con-

siderable attention since then. For the most part we are not concerned with inductive

inference in this thesis (although it was one of the inspirations for the model we study

in Chapter 6). For interested readers, [6] is an excellent survey article; an excellent

introductory book on the subject is [39].

In this thesis, we are instead concerned with what is generally known as learning

concepts from examples or simply learning from examples. The learner receives only

some limited number of examples, and after that is supposed to output some represen-

tation of a rule for distinguishing positive instances from negative instances. Intuitively,

the idea is that the presentation of the labeled instances constitutes the training of the

learner, and that after training the learner should be able to classify previously unseen

instances for itself.

In the context of learning from examples, we normally call the rule for distinguishing

positive from negative instances a concept. As mentioned above, the true rule is called

the target concept. To decide whether the learner has learned well, we may ask simply

whether the learner has produced as output some representation of the target concept.

Learning, however, is a difficult task, and unless the task is highly constrained, always

finding exactly the target concept concept may be difficult or even impossible. (Re-

member that the whole point of learning from examples is to avoid showing the learner

all possible instances in the training phase.) Thus we often settle for the learner out-

putting a concept that is "close to" the target concept, or even "probably" close to the

target concept. Of course, "close to" and "probably" must be precisely defined in any

particular formal model of concept learning.

Having decided upon some criteria for learning well, we must then decide how to

measure whether those criteria have been met. One obvious approach is to imple-

ment any proposed learning algorithm and then run it on test data. Much artificial

intelligence research on machine learning follows that empirical approach.

This thesis, however, contains no empirical results at all. Instead, we give formal

proofs that our algorithms meet various criteria for learning well. The emphasis on

proving the goodness of algorithms is, in fact, one key property that distinguishes

computational learning theory from other machine learning research.

1.2.7 How efficiently is it learned

In addition to requiring the learner to learn well, we also require the learner to learn

efficiently. There are three sorts of resources the learner consumes:

1. Computation time.

2. Memory.

3. Labeled instances.

We require that our learner be restricted to efficient computation. At the present

time, "efficient computation" is generally understood to mean whatever can be com-

puted in probabilistic polynomial time (technically BPP). That is the restriction we

impose on all learning algorithms studied in this thesis. Of course, in order to re-

strict our learner to probabilistic polynomial time computations, we have to answer the

question, "Polynomial in what?"

For the most part, we are content simply with finding algorithms that meet the

broad BPP definition of efficient, and ignore the question of the particular asymptotic

running times of our algorithms, though we occasionally discuss running times. Notice

that this approach is may be unrealistic if one's goal is to actually build real-time

robots.

Similarly, we generally ignore the memory usage of our algorithms. The running

time of an algorithm places a crude bound on its memory usage, and we settle for that.

In addition to the usual resources of time and space, learning algorithms also con-

sume labeled instances. The number of instances consumed forms an obvious lower

bound on the running time of an algorithm, so we restrict all our algorithms to a

polynomial number of instances.

In the other direction, we study how many examples must be present to solve

certain learning problems. Just as the problem of sorting has an Q (n log n) lower

bound on its time complexity-independent of how much memory a sorting algorithm

has available-certain learning problems have various lower bounds on their sample

complexity independent of how much time or memory they have available. Intuitively

a particular sample complexity for a learning problem means that at least that much

data are required for a statistically adequate sample.

1.3 Overview of remaining chapters

In the next chapter we formally specify a particular model of concept learning, Valiant's

pac learning model [52]. That model addresses many of the concerns discussed in this

introductory chapter.

In Chapter 3 we exhibit a learning algorithm for learning a certain class of concepts

within the pac learning model. The instance space is Zk, or more generally, any Eu-

clidean domain, and the concepts of interest are any submodule. We give a detailed

analysis of the performance of the algorithm, and the lower bounds for the problem

it solves, and examine several applications of the algorithm. We show that this algo-

rithm is optimal within the pac learning model, and near optimal in a related but more

stringent learning model called on-line learning.

The basic pac learning model of Valiant [52] ignores the issue of noise. Since the

model was published, several authors have considered the effects of noisy data within

that model [51, 5, 25, 31]. Those papers all assumed one of two particular types of

noise that might corrupt the data: one very malicious, and one very benign. Not

surprisingly, it was shown that the maximum tolerable amount of noise is much greater

for the benign model than for the malicious model. In chapter 4, we consider where

the dividing line between these models falls. In particular, we study two new models

of noise, both "in between" the models previously studied.

One limitation of the pac learning model is that certain learning problems are

computationally intractable in that model. In Chapter 5, we specify a learning model

with a more helpful teacher than the one allowed in pac learning. With the aid of this

teacher, we be able to learn any reasonable concept class, and also achieve a stronger

sort of learning than pac learning.

Finally, in Chapter 6, we look at an altogether different type of learning. In that

chapter we introduce a new model of learning that combines certain aspects of learning

from examples and inductive inference. The result is something that crudely models

the scientific method.

Chapter 2

Pac learning

2.1 Introduction

In this chapter we formally define one particularly important model of learning, "prob-

ably approximately correct learning," or pac learning for short [52]. All of the results

in this thesis except for those in Chapter 6 are in either the pac learning model or some

variation thereof. We briefly discuss the intuition behind the pac model, and then

give an example of an algorithm for a particular learning problem within this model,

learning monomials.

Next we discuss a number of technical issues of pac learning. These issues are

important in Chapter 4 where we discuss the effect of noisy data on pac learning

algorithms, and in Chapter 5 where we discuss a variation on the pac learning model.

We conclude by discussing sufficient conditions for pac learning, including the im-

portant combinatorial parameter known as the Vapnik-Chervonenkis dimension [55).

An understanding of that parameter is necessary for some of the results in Chapter 3.

With the exception of Theorem 2.2, which is original, the material in this chapter

is all a review of the computational learning theory literature.

17

2.2 Pac learning

In an influential 1984 article [52], Valiant introduced the pac learning model. In short,

an algorithm pac learns from examples if it can, in a feasible amount of time, find (with

high probability), a rule that is highly accurate. Now we must define what we mean

by such terms as "find a rule," "with high probability," and "highly accurate."

Fix an instance space X. Formally a concept c for instance space X is some subset

of X. If instance x E X is contained in concept c, then we say that x is a positive

instance of c; otherwise we say that x is a negative instance of concept c. (We are

slightly sloppy throughout and refer to concepts interchangeably both as subsets of the

instance space and as {0, 1}-valued functions defined on the instance space.)

The length of concept c, denoted Icd, is the number of bits it takes to write down c in

some agreed-upon encoding scheme. For example, if our instance space is {0, 1}", pos-

sible representations for concepts include truth tables, boolean formulas, and boolean

circuits. (Haussler [20] gives a good discussion of issues concerning choice of represen-

tation of concepts.) The length of an instance is defined similarly.

Let C be a set of concepts or concept class over X. Formally, C C 2x . If X is

the inhabitants of the U. S., concepts would include both the rather simple concept

males, and the doubtless more complicated concept, people whose marginal federal

income tax rate is thirty-three percent. An example of a concept class would be TAX

BRACKETS which would include the concepts people paying no income tax and people

whose marginal tax rate is thirty-three percent.

We call the concept c E C that our algorithm is trying to learn the target concept.

The target concept may be any concept whatsoever in the concept class. We think of

it as being arbitrarily chosen by some outside teacher or supervisor.

We assume that our learning algorithm has available to it a black box called EX-

AMPLES, and that each call to the black box returns a labeled example, (x, s), where

x E X is an instance, and s is either "+" or "-" according to whether x is a positive or

negative instance of the target concept c. Furthermore, the EXAMPLES box generates

the instances x according to some fixed probability distribution P on X. We make no

assumptions whatsoever about the nature of P, and our learner is not told what P is.

First we define formally what it means for a concept to be an accurate approximation

of target concept c, and then we define pac learning itself.

DEFINITION. Fix an instance space X and a probability distribution P on X. We

say that concept cl is an e-approximation of concept co if and only if

S P(x) < E. (2.1)

DEFINITION. Let C be a class of concepts on domain X. Algorithm A probably

approximately correctly learns (pac learns) C if and only if for every c E C, for every

probability distribution on X, for every positive e and 6, algorithm A, given only e, S

and access to EXAMPLES(c), meets the following two criteria.

Learning criterion Algorithm A outputs some representation of a

concept c' such that

Pr [c' is an e-approximation of c] > 1 - 6 (2.2)

where the probability is taken over the output of EXAMPLES and any

coin tosses A may make.

Efficiency criterion The running time of A is bounded by some polyno-

mial function of 1/e, 1/6, the length of an instance, and the length of

the target concept.

We say that a concept class C is pac learnable if there exists some algorithm that

pac learns C.

We note here for later use the following weaker definition.

DEFINITION. Statistical pac learning or s-pac learning is defined the same as pac

learning except that the efficiency criterion is that the sample complexity rather than

the running time must be bounded by by some polynomial function of 1/e, 1/6, the

length of an instance, and the length of the target concept.

2.3 Discussion of the definition

Intuitively, we are saying that the learner is supposed to do the following:

1. Ask nature for a random set of examples of the target concept.

2. Run in polynomial time.

3. Output some concept that with high probability agrees with the target concept

on most of the instances.

We think of Nature as providing examples to the learner according to the (unknown)

probability with which the examples occur in Nature. Though the learner does not know

this probability distribution, he does know that the concept he outputs needs to closely

approximate the target concept only for this probability distribution.

Intuitively, there may be some extremely bizarre but low probability examples that

occur in Nature, and it would be unreasonable to demand that the learner's output con-

cept classify them correctly. Hence we require only approximate correctness. Moreover,

since the examples the learner receives from Nature are drawn stochastically, there is

some small but nonzero chance that those examples will be wildly unrepresentative.

Therefore we cannot require the learner to always output an approximately correct

concept; we only require that the learner do so with high probability.

The notion of s-pac learning was studied in the statistical pattern recognition liter-

ature before the notion of pac learning was introduced in 1984. The difference between

the two is that s-pac learning requires us to be efficient in our consumption of examples

but not in our computation time. Notice that any algorithm that pac learns must s-pac

learn since the sample complexity of an algorithm is a lower bound on its running time.

Thus the strongest infeasibility results we can obtain are showing the infeasibility of

s-pac learning. In general it is often easier to prove theorems about s-pac learning than

about pac learning.

The excellent survey article of Kearns et al. gives a more lengthy discussion of the

entire pac learning model, and also provides an overview of recent results obtained

using this model [26]. Blumer et al. and Valiant both contain additional material on

the motivation for the pac learning model [9, 52].

2.4 An example of pac learning

We now exhibit an algorithm that pac learns monomials [52]. The instance space is

{0, 1}" for some positive n. The concept class is the set of all boolean expressions in n

variables that can be represented as monomials (simple conjunctions of literals).

The algorithm A for pac learning is as follows: A first makes one call to EXAMPLES,

and figures out what n is. (Alternatively, n may be an additional input to A.) A then

initializes its hypothesis to be the conjunction of all 2n literals, x 1 1 - z,,. A then

makes m more calls to EXAMPLES, where

1
m = - (n In 3 + In(.1/)).

For each positive instance, (instance, +), algorithm A crosses off zx from its hypothesis

if xi is 1 in instance, and crosses off ti if xi is 0 in instance. Algorithm A simply ignores

negative instances. The output of A is the monomial consisting of whatever literals

have not been crossed off after the m instances are seen. (If all of the m instances are

negative, then A's hypothesis is xz1E ... 2,i, which is always false.)

The running time of of A is clearly polynomial in 1/, 1/6, and n, and the length

of an instance is n, so A meets the efficiency criterion for pac learning. It follows

easily from the results of Blumer et al. [11] that A meets the learning criterion for pac

learning. The value of m is not the best possible, but it makes the proof especially

simple.

2.5 Some definitions and technical details

2.5.1 Asymptotics

Throughout, we strive to find computationally efficient learning algorithms. We there-

fore need to discuss the asymptotic difficulty of our problems. Otherwise, all problems

can be solved in "constant" time.

For instance, the concept class COly• of all subsets of {0, 1}n accepted by some

polynomial-size circuit is not pac learnable if any one-way function exists (Valiant [52]

using cryptographic tools of Goldreich, Goldwasser, and Micali [15]). Nevertheless, if

we simply fix n, in spite of that result, it would be possible to pac learn the class

CP°ly. The running time of the algorithm to do so would be a particular polynomial

function of 1/f and 1/6. That polynomial would, however, contain some multiple of

the "constant" 2" as one of its coefficients.

Thus instead of examining algorithms for one fixed learning problem, we always

examine algorithms for an infinite sequence of learning problems. There are two differ-

ent ways we can construct this sequence: by allowing instance length to grow and by

allowing concept length to grow.

In the first approach we must parameterize the instance space. Thus our instance

space X = Ulo X,. We assume that there is some polynomial 1 such that all instances

in X, have length between n and l(n). We also assume that any one concept c in

our concept class C is completely contained in X, for some n. We define C,,• to be

{c E Clc C X, and Icd < s}, and C, = U,C,,,. Various classes of boolean functions are

often studied in this way. Another example of a concept class that can be studied this

way is the class of half-spaces of R". We note for future reference that we consider such

a concept class to be finite if ICnI is finite for every n.

The other way to make our learning problems asymptotic is to take a fixed instance

space, but to allow concepts to grow arbitrarily complex. For instance, we could fix

the instance space to be the real plane, and let C be the set of all convex polygons.

We could then make C, the set of convex n-gons, or alternatively, the set of convex

polygons with at most n edges.

2.5.2 Method of sampling

Notice that our definition of pac learning did not require that the learning algorithm

make all its calls to EXAMPLES at once. Indeed, the pac learning algorithm we gave

for learning monomials first makes one call to determine the length of instances, and

then makes m further calls, where m is dependent on what that first call to EXAMPLES

returned.

Early work in pac learning generally required that a learning algorithm make a

fixed number of calls to EXAMPLES dependent only on the size of instances, e, and

6. We refer to that model of learning as static sampling pac learning. Note that in

the static model, the size of an instance is normally an additional input parameter.

Linial, Mansour, and Rivest [33] discuss the ramifications of allowing arbitrary calls to

EXAMPLES instead of requiring static sampling.

2.5.3 Samples and consistency

For a fixed target concept ct, we call a set of instances each labeled positive or negative

a sample (of ct). Whenever there is an underlying probability distribution on the

instance space, a sample is assumed to be randomly drawn according to that probability

distribution. The size of a sample is the number of instances it contains. Notice that

in the usual case where the sample is obtained stochastically, the number of distinct

instances in the sample may be less than the size of the sample.

We say that a concept c is consistent with a given sample if c contains all the positive

instances in a sample and none of the negative instances. The consistency problem for

a concept class is to find a consistent concept for a given sample of some concept in

the class.

2.5.4 Variations on pac learning

The pac learning model itself can be altered in many ways. For instance, instead of

having a single probability distribution on the whole instance space and a single box

EXAMPLES, there can be two separate probability distributions, one each for positive

examples and negative examples, and two boxes, EXAMPLES' and EXAMPLES-,

each giving only one kind of instance. In this case, the learning algorithm is allowed

to make calls to either box, and its hypothesis is required to come within e on both

positive and negative examples. This model is called the two-button model; the model

we discussed first is called the one-button model.

There are in fact numerous different minor variations on pac learnability. Haussler

et al. compare many of these variations, and show them to be substantially equivalent.

24

2.6 Sufficient conditions for pac learnability

Let us briefly examine when a concept is pac learnable. A starting place place is the

case when the concept class has very small cardinality. In the extreme, consider the

case where the concept class contains only two concepts, cl and c2.

In general, we are concerned only with situations where it is computationally effi-

cient to determine whether any particular instance is contained in a given concept. Let

us assume that is the case for cl and c2. Now all we need to do is draw a sufficiently

large sample from EXAMPLES, and select whichever concept is consistent with the

sample, or, if both concepts are consistent, choose either one arbitrarily.

We can extend this line of reasoning to considerably larger (finite) concept classes.

Our treatment follows Blumer et al. [11]. Consider an algorithm that draws a sample

of size m(CI , , 8), and then outputs any concept c E C that is consistent with the

sample. Ignoring for a moment the issue of computation time, what is a lower bound

on the function m that insures that the learning algorithm meets the s-pac learning

condition?

DEFINITION. Fix a target concept and a probability distribution on the instance

space. We say that a concept is e-good if it is an f-approximation of the target concept,

and f-bad if it is not.

We want to guarantee that the probability that the algorithm returns an f-bad con-

cept is at most 6. The probability that a particular E-bad concept would be consistent

with m randomly drawn examples is bounded above by

(1 - E).. (2.3)

A crude upper bound on the probability that any e-bad concept is consistent with m

randomly drawn examples is

ICl(1 - E). (2.4)

Hence we want to choose m large enough to insure that

ICl (1 -~) m < 6. (2.5)

Taking logs of both sides, and solving for m yields

1
m (> ln(ICi) + ln(1/6)). (2.6)

We can write a simpler inequality that implies inequality (2.6) by noticing that by

Taylor's Theorem

(-1 - 1 - 2 1
In > lnl+c.(1..f)+2(16)2

>

Hence a sufficient condition is

m > (In(C) + In . (2.7)

We say that m is an upper bound on the sample complexity of the concept class

C. More generally we say that an arbitrary concept class V has sample complexity at

most m if there is a learning algorithm with sample complexity m that s-pac learns E.

Let us assume that we have an instance space, such as {0, 1}", where all instances

have length n, and the length of every concept in our concept class C is bounded by

some polynomial function of n. As long as ICl = O (2P()), for some polynomial p, then

C has polynomial sample complexity. If C has polynomial sample complexity, and if

the problem of finding a concept from C consistent with a given sample can be solved

in polynomial time, then C is pac learnable. We call any pac learning algorithm that

draws a sample of size m(e, 6, ICI) for some function m, and then returns an arbitrary

c E C that is consistent with the sample a static consistent learning algorithm.

There are at most 3' different monomials on n boolean variables, so the concept class

of monomials has polynomial sample complexity. The algorithm for learning monomials

given above in Section 2.4 is a static consistent algorithm. It draws a sample of a size

that meets the bound of inequality (2.7), and in polynomial time finds a monomial

consistent with that sample.

On the other hand, the class of all boolean functions on n variables has size 22', so

we can not hope to find a static consistent algorithm for it of this sort.

2.6.1 Occam algorithms

A static consistent algorithm draws a sample, and outputs some hypothesis consistent

with that sample. There is a more general class of algorithms with that behavior which

achieve pac learning, the Occam algorithms [11].

DEFINITION. An Occam algorithm for C with constant parameters c > 1 and

0 < a < 1 is an algorithm that:

1. produces a concept (not necessarily from C) of length at most ncrm when given

a labeled sample of length m of any target concept in C of length at most n, and

2. runs in time polynomial in the length of the concept.

The importance of Occam algorithms is shown in the following theorem of [11]:

Theorem 2.1 (BEHW) Any Occam algorithm for C pac learns C.

Notice that static consistent algorithms are the special case of Occam algorithms

with a = 0.

Observe that an Occam algorithm A must be a data compression algorithm. If we

get a sample of labeled instances we can compress it by storing just the instances and

the concept output by the Occam algorithm. To decompress we use the concept to

recover the original labels.

In particular, the definition of Occam algorithm implies that there is a constant

0 < p < 1 such that for every n, for all sufficiently large m, on input a sample of length

m of a concept of length at most n algorithm A must output a consistent concept of

length at most m . We know that the length of A's output can be at most nCme for
1--a n"

some a < 1. Now for any fixed n, for sufficiently large m, m - > nc. Thus setting

S= (1 + a)/2 suffices.
In general there is a strong connection between the ability to compress and the

ability to learn. Indeed, the ability to compress the sample somewhat is a necessary

condition for at least static sampling pac learning.

Theorem 2.2 Let C = U==LC,. be a concept class where C, is defined on {0,1}". If

C is statically pac learnable, then there must be an algorithm A such that for every

sufficiently large n, there exists a constant e > 0 such that for sufficiently large m,

given a sample of length m of any concept c E C,, algorithm A with probability at least

1- 1nl - w(1)* returns some representation of a hypothesis of length at most (1- 6)m that

is consistent with the sample.

Proof We employ cryptographic tools from Yao's theory of "computational informa-

tion theory" [57] to show that if such an algorithm does not exist, then we cannot hope

to pac learn (or even weakly approximate) C.

For each n, let the probability distribution P on {0, 1}' be the uniform distribution,

and fix some concept c, E C,. For n > 1, let Sn+1 be a device that stochastically

generates a string consisting of an instance x chosen randomly from {0, 1}" followed

by cn(x). Let X 1 be an arbitrary stochastic source of strings of length 1. Then S =

SI, S2,... forms a uniform source ensemble. That is to say, each S, is a stochastic

*Recall that f(n) = w(g(n)) if and only if g(n) = o(n). In particular, f(n) = In- 'W(1) if and only
if f(n) vanishes faster than the reciprocal of any polynomial in n, or, formally, if for every positive c,
for all sufficiently large n, we have f(n) < 1/n'.

source of strings of length n. (For the precise definition see either Yao [57] or a text on

information theory.)

Let the true random number ensemble (on alphabet {0, 1}) be the source ensemble

R = R 1 , R2,... where RP assigns probability 2-" to strings of length n and probability

0 to all other strings.

Claim: If S is polynomial indistinguishable from R, then concept class C is not

statically pac learnable.

We show the contrapositive of this claim. Assume that we have an algorithm SPL

that statically pac learns C. Then we can use algorithm SPL as a subroutine in an

algorithm to distinguish S from R. Let s(n, E, 6) be the number of instances from

EXAMPLES that SPL requires.

The distinguishing algorithm will work to distinguish samples of S, from samples

of RJ as long as the sample length is at least 1 + s(n - 1, 1, -). The behavior of the

distinguishing algorithm is as follows: We feed all the labeled examples in the sample

except the last one to SPL, to obtain an output concept &. The distinguishing algorithm

outputs 1 if the classification of the last instance in the sample.according to C matches

its true classification, and 0 otherwise. If the sample came from S,, then the output of

the distinguishing algorithm must be 1 with probability at least (1 - !)(1 - 14) = 9

On the other hand, if the the sample came from the true random number ensemble,

then the output of the distinguishing algorithm is 1 with probability exactly .

Hence it must be that S is polynomial distinguishable from the true random number

ensemble. Yao [57] shows that this implies that it must be possible to communicate a

sufficiently long sample from Sn from one polynomial time computing agent to another

using polynomially fewer bits than are in the sample with overwhelming probability.

(The probability is taken over the output of the source and over any coins the two

communicating parties may toss.) In particular, for sufficiently large m, it must be

possible with probability at least 1 - Inj- w(1), to communicate a sample of of length

m (containing mn bits) in at most m(n - 1/nk) bits for some positive integer k. Now

of the mn bits, m(n - 1) bits come from drawing randomly from {0, 1 }n-1, and so

cannot be compressed at all. That means that it must be possible to write down some

representation of the m label bits in at most

[m(n - 1/nk) - m(n - 1) = m(l - lnk)

bits. Putting e = 1/nk yields the desired result. O

2.6.2 VC dimension

Previously we have examined sufficient conditions for pac learnability. In this section

we examine a combinatorial parameter that provides a necessary and sufficient con-

dition for static sampling pac learnability, the Vapnik-Chervonenkis dimension [55],

hereinafter VC dimension or VCdim. Since it is a combinatorial parameter of set sys-

tems, we define it in terms of sets, though of course the sets we are interested are

concepts.

DEFINITION. Fix a domain X, and let C C 2x .A set S C X is shattered (by C) if

for each subset S' C S, there is a set c E C which contains all of S', but none of the

points in S - S'.

Remark: The term shatter is now well established. However, as Pollard points out

[43], the right picture to keep in mind is not really S being broken into lot of tiny pieces

by C. Rather, one should imagine a diligent C picking out all the different subsets of S.

DEFINITION. The VC dimension of C C 2x is the cardinality of the largest set of-

points from X shattered by C.

Examples: The class of all rectangular regions in the plane has VC dimension 4.

The class of all spheres in R" has dimension n + 1. For any finite concept class C, we

have VCdim(C) < log(ICl).t

The VC dimension was first studied in connection with statistical pattern recogni-

tion. Pollard and Vapnik have both written good books discussing it from that point

of view [43, 54]. The first source that I am aware of to point out that it has some

connection to efficient concept learning is Pearl [40].

The key fact about the VC dimension for our purposes is that a concept class has

polynomial sample complexity if and only if it has finite VC dimension. In particular,

if the VC dimension of concept class C is d, then Blumer et al. [10] showed that the

sample complexity of C is bounded by

sample complexity < max (log (), j log (-)). (2.8)

Notice that since finite VC dimension is a necessary and sufficient condition for

polynomial sample complexity assuming the static sampling model, finite VC dimension

is a necessary condition for static sampling pac learnability. It is not, however, a

sufficient condition. We must also be able to find a concept consistent with any sample

in probabilistic polynomial time. For some concept classes, such as monomials, we

know how to do this. However, for many interesting concept classes the problem of

finding a concept consistent with a sample is NP-complete.

tExcept where explicitly stated otherwise, all logarithms in this work are base 2.

Chapter 3

A learning algorithm for

submodules

3.1 Introduction

In this chapter we present an algorithm for learning the concept class Ck of all subsets of

Zk closed under addition and multiplication by integers. In algebraic terms Ck consists

of all submodules of the free Z-module of rank k. Using other terminology, Ck is the

set of all integer lattices contained in R k.

We give a learning algorithm that has performance within a log log factor of optimal

in the on-line mistake bound model of learning, which we describe below. That learning

model is "more strict" than the pac learning model: any learning algorithm with good

performance in the mistake bound model can be used as a subroutine to construct a

pac learning algorithm, but not all pac learning algorithms have good mistake bounds.

In particular, we prove an absolute mistake bound for the algorithm we present of

k log n, where n is an upper bound on the absolute value of any component of any

example seen, and prove that no learning algorithm can have a mistake bound of less

32

than (1 - e) klog, for any e > 0. Thus we achieve a very strong learning performanceloglogn

in a very strict model of learning. By way of contrast, Abe [1] presents a learning

algorithm for semilinear sets, a much broader class of k-tuples of integers, but that'

algorithm has a much worse mistake bound.

The algorithm we present has a certain high level similarity to the so-called L3

algorithm for lattice basis reduction [32]. In both cases a tentative basis for the lattice

is maintained at all times, and certain algebraic transformations are made to the basis.

However, the similarity is only superficial, because the L3 algorithm in fact is solving

a very different problem. The goal there is to find an new basis for the same lattice

containing one vector of small Euclidean norm. In the learning problem, our goal is

to converge towards a basis for the lattice of all positive instances, and every time we

update our basis, the lattice generated by the it will strictly increase.

In addition to the algorithm, we also present several applications. For instance, an

interesting subclass of the above class Ck is the class Ck' of zero-reversible commutative

regular languages over alphabets of size k. (A sufficient but not necessary condition

for a commutative regular language to be zero-reversible if for it to have an accepting

DFA in which the only final state equals the start state.) Recently it has been shown

by Pitt and Warmuth that for any fixed polynomial Q, the problem: "given a set of

examples (from some L E C' accepted by a DFA of k states) find a DFA or NFA with

fewer than Q(k) states consistent with the examples," is NP-hard [42]. Surprisingly

the algorithm we present bypasses that hardness result by representing its hypothesis

in matrix form rather than as a DFA.

3.2 Mistake bounded learning

There are many ways we can evaluate how well a learning algorithm has learned. We

list below four possible criteria, in what intuitively appears to be the order of increasing

strictness.

1. Pac learnability-the learning algorithm must with high probability produce a

hypothesis of small error [52].

2. The probability of making a mistake on predicting the label of the last instance

[22].

3. The expected total number of mistakes for on-line prediction of the labels of the

first t instances [22].

4. The worst case total number of mistakes for on-line prediction of the labels of

any (possibly infinite) sequence of instances [34].

In fact, Haussler et al. [21] have shown that the first two criteria are substantially

equivalent. In this chapter we present an algorithm that learns well with respect to

the fourth, ,strictest, criteria. It follows that this algorithm can be easily converted to

a pac learning algorithm.

We follow Littlestone [34] in defining mistake based performance criteria for learning

algorithms. In particular, for learning algorithm A and target concept c define MA(c)

to be the maximum number of mistakes algorithm A makes for any possible sequence

of instances. For any non-empty concept class C, define MA(C) = maxEc MA(c). Any

bound on MA(C) is called a mistake bound for algorithm A applied to class C. The

optimal mistake bound for concept class C, opt(C), is the minimum over all learning

algorithms A of MA(C).

3.3 Learning submodules

We now present algorithm SM for the on-line learning of the concept class Ck of

submodules of the free Z-module Zk. The main data structure this algorithm uses is a

k by k upper triangular matrix M which is initially all 0, and gradually has nonzero

rows added to it as we see positive examples. At any point the algorithm's current

hypothesis is the row span of M. Algorithm SM makes a mistake only when it gets

a new positive example x is not in the span of M. When this happens, M must be

updated to a matrix whose span also includes x. Sometimes we can accomplish this by

simply adding x as a new row; more often we have to perform an operation similar to

Gaussian elimination.

We begin by giving a precise description of algorithm SM in section 3.3.1, and

then move on to analyze its mistake rate and give several applications. Note that the

algorithm itself involves standard techniques in linear algebra. The major contributions

of this chapter are the analysis and the applications of the algorithm. In particular, we

show that SM achieves an absolute mistake bound within a log log n factor of optimal,

where n is the largest (in absolute value) component of any instance seen.

We also show that SM can actually be generalized to learning a submodule of any

free module over a Euclidean domain, or a coset of any such submodule.

3.3.1 The algorithm SM

Throughout we maintain an upper triangular matrix M of integers. Matrix M is

initialized to be all 0.

1. Initially, we respond "Negative" to every instance (other than Ok), until we even-

tually make a mistake on instance x. We then update M to consist of the single

row z.

2. At a general step, we determine whether our new instance, x, can be written as

an integer combination of the rows in the matrix. (This can be done by back-

substitution with O(k 2) arithmetic operations.) If so, we respond "Positive,"

since it is certain that x is in the submodule. Otherwise, we respond "Negative."

3. If we make a mistake, we make append x as a new row to the bottom of matrix

M. After adding the new row x, we must ensure that M is still upper triangular

of at most k rows. If it is not, then we perform an operation, similar to Gaussian

Elimination, which we call "reducing" M. (We call it reduction because it will

sometimes reduce by one the number of rows in M.)

The reduction process is as follows:

For c := 1 to k do the following to obtain a new row c:

(a) If mc = 0, find the least j > c, if any exists, such that mcj 0. If there was

such a j swap rows c and j.

(b) If all rows below row c have 0 in column c, do nothing.

(c) Otherwise, let the nonzero entries of M in this column from row c downward

be { mil,,mi2,...,mi,c}. (Notice that il = c.) Compute g, a greatest

common divisor of these elements, and d, such that g = •= djmij,c. Now

create a new row c for M by setting

newrow = L dlM(),
1=0

(where M(1) is the 1-th row of M) and inserting newrow into M between

rows c - 1 and c.

(d) Now zero out the entry in column c of all rows below newrow in M by

subtracting out an appropriate multiple of newrow.

The above steps ensure us an upper triangular matrix. Finally, we remove any

rows consisting entirely of 0, and we must be left with at most k rows.

The general strategy of SM is that whenever we make a mistake on instance x we

add some elements, including x, to the row span of matrix M.

3.3.2 Running time

The running time of SM depends on k, and also on the absolute value of the largest

component of any number seen. Call the latter parameter n.

To make a prediction requires time 0 (k2).

Updating M requires computing the greatest common divisor of k numbers of size

at most n. That requires time O (k + log n) (word steps-one division operation, for

instance, is counted as one unit of time). There are up to k such operations and also

general matrix operations, so the total running time for an update is O (k3 + k log n).

3.3.3 Mistake bound

In this subsection we calculate SM's mistake bound, MSM(Ck) and consider how close

it is to opt(Ck). It turns out that the mistake bound depends on the size of the

instances seen, so we denote by Ck(n) the restriction of concept class Ck to domain

{-n,..., 0,..., n}k . Notice that we are not limiting the size of the input of SM; we

are simply describing its performance as a function of the size of its input.

First we prove a technical lemma that we will need in the analysis. This lemma

says that a trivial fact about matrices with entries from R (or any field) is also true for

matrices with entries from Z.

Lemma 3.1 Let M1 and M 2 be two upper triangular matrices of integers such that the

integer row space of M1 is a subset of the integer row space of M2 . Then the number

of rows of M2 containing some nonzero entry is greater than or equal to the number of

rows of M1 containing some nonzero entry.

Proof Assume WLOG that M, and M 2 are both square k by k matrices. Denote by

M(l) row 1 of matrix M. Assume WLOG each matrix has the property that for every

1 < i < i either row i is all zero, or its i, i entry is nonzero. Now we show that for

every 1 < i < k, if Mx (i) is not all zero, then M2 (i) is not all zero.

Row MI(i) is in the integer row space of MI. It must therefore also be in the integer

row space of M2. Hence there are integers z,..., zk such that M1(i) = ZC= zjM 2 (j).

Assume MI(i) contains nonzero components. Then the it must be that components

1 through i - 1 are zero, and component i is nonzero. Therefore Mi(i) = EZ.=i zjM 2 (j).

In particular, the i, i entry of M1 is zi times the i, i entry of M 2. Therefore M2 (i) is

not all zero. D

Theorem 3.1 MsM(Ck(n)) = k + k rlog n].

Proof When the algorithm responds "Positive," it is always correct. Thus to count

the number of mistakes, we only need to figure out how many times the algorithm can

say "Negative" on a positive example. Whenever we do this, we update matrix M to

a new matrix M'.

There are two different sorts of mistakes we can make, corresponding to two different

ways M' can have changed from M.

1. M' can have one more row than M. At the end of processing a mistake of any

sort, the matrix is returned to upper triangular form. Since the matrix's row span

never decrease, it follows from Lemma 3.1 that the matrix must never decrease

in number of rows. Therefore there can be at most k mistakes where M gains a

row. (Notice that our very first mistake must always fall into this category.)

2. Otherwise, M' has the same number of rows as M. We now analyze this case.

Claim: If at the end of a reduce we have the same number of rows as at the

beginning, it must be that for every diagonal element, mi, of M', mii I min, and for

some i, m, is not ±mij.

Proof of claim: The integer row span of M' must contain the integer row span of M.

In particular, it must contain the ith row of M which we denote by M(i). The first i - 1

components of M(i) are 0, and the i-th component is mi . Writing M(i) = Z z M'(j),

zj E Z, it must be that mij = z;m. Hence m mi as claimed.

Now we need to show that some diagonal element actually changes. We could

also prove this with a linear algebra style argument, but for variety's sake, we finish

the claim by examining the algorithm's function. The first time that the algorithm

actually inserts a row c into M' that is different from M(c) in step 3c must be for the

least c such that m,, ' z, where x was the instance not in the row span of M. The

new m' is gcd(mc, x,), which is a proper divisor of mc. This completes the proof of

the claim.

It now follows that with errors of the second sort, the worst we can do is [log n]

mistakes per diagonal element, for a total of k [log n]. O

How good is SM's performance? To answer this question, we must calculate

opt(Ck(n)). [34] shows that the VC-dimension provides a lower bound on the opti-

mal mistake bound.

We begin by exactly calculating the VC-dimension for Cl(n) ("learning multiples

of size at most n").

Theorem 3.2 Let d be the VC-dimension of Cl(n). Then

d = max{r 12-3-5--.-p, < 2n}

where pi is the ith prime.

Proof We start with a definition we need in our proof:

DEFINITION. Let S be any shattered set; let T C S. We call a concept c such that

T = c nS a witness for T.

Now, we show d > r. Let r be maximum such that P = Hil Pi • 2n. First we

exhibit a set S C X, ISI = r that is shattered: S is all products of all but one of the

first r primes; in symbols S = {P/pi 1 1 < i < r}. Since P/p < n for all primes p,

every element of S is in the instance space. For every x = P/pi in S, define X = pi.

S is shattered: The witness for any nonempty T C_ S is P/ t,,ET t. The witness for

the empty set is 0.

Hence d > r. Now we show that d < r:

Let S = {Xzl, 2 ,... Xk} be shattered. First we argue that we may assume that there

is no s > 1 that divides all elements of S. If there is such an s, we can work instead

with S' = {xI/s, 2/s,.. . xk/s} and divide each witness by s.

Call any subset of k - 1 elements of S a minor. S has k minors, Si. Let t, be the

witness for Si.

Now no ti can be 1, since for every i there is some x E S, ti yx. (Note that assuming

ISI > 1, 0 V S, because 0 is a positive instance of every concept save one, and S is

shattered.) Furthermore, (ti, tj) = 1 for all i # j, since (ti, tj) I x for every x E S, and

we assumed that 1 is the only number with this property. Thus it much be that for

each i there is a prime pi such that pi I ti but pi Ypj for any j # i.

The product of any k - 1 tis is a witness for some one element of S; therefore the

product must be at most n. Since each ti has a unique prime divisor, and the product

of any k - 1 of them must be at most n, the product of all of them must be at most

2n. 1C

We next note the following fact from number theory. (See, eg. Hardy and Wright

[19, page 2631.)

Theorem 3.3 Let f(n) be the maximum number of consecutive primes such that

i=i PAi < n. Then for every e > 0, for all sufficiently large n we have

(1 - e) Innf(n) >
In In n

From the preceding two theorems it follows that

Corollary 3.1 Let d be the VC-dimension of the problem of learning multiples of size

at most n. Then for all e, for sufficiently large n,

d> (1 - e) In n
lnlnn

Remark: The preceding should make it clear that if we place no bound on n, then

the VC-dimension of the problem of learning multiples is infinite.

We now get a lower bound on the VC-dimension of our true problem, learning

submodules of Zk for k arbitrary, and hence a lower bound on the optimal mistake

rate.

Theorem 3.4 Ck(n) has for all e, for sufficiently large n,

In n
VCdim > k(1 - e) ln nIn In n

Proof sketch: Let S be the set of numbers that we shattered in the proof of Theo-

rem 3.2. Let U be the set of size k ISI consisting of all k-tuples of integers containing

k - 1 Os and one entry from S. We can shatter any T C U by writing T as the union

of k subsets of tuples, each having all its nonzero entries in the same component, and

for our shattering concept selecting each component from S in the same way we did in

the proof of Theorem 3.2.

It follows from Theorem 3.3 that the size of S has the desired property. E

As claimed, algorithm SM is within a log log n factor of optimal.

3.3.4 Special case: k = 1

For the case k = 1, when instances are integers and concepts are sets of multiples,

instead of using algorithm SM, we can implement the halving algorithm [7, 34]. To

implement it, we have to perform one factorization of an instance, but that is one

factorization for the whole run of the algorithm, not one per mistake.

Theorem 3.5 On instances of absolute value at most n, the halving algorithm achieves

a mistake bound of 1+maxm<n [log r(m)J where r(m) is the number of positive divisors

of m.

Proof The algorithm makes one mistake on the first positive instance it sees. Call this

instance m. Without loss of generality, 0 < m < n. Once m has been seen, the divisors

of m are the only candidates for being the target concept, and the halving algorithm

cuts the number of candidates by at least half with every mistake. Hence the mistake

bound is, as claimed, 1 + maxm<n [log r(m)J. O'

The performance of the halving algorithm (See Hardy and Wright [19, page 260] for

bounds on numbers of divisors of a number.) turns out to be close to the lower bound

implied by Corollary 3.1 but to have a gap in multiplicative factors of (1 + e) versus

(1 - e). However, the halving algorithm is, in fact, virtually optimal. In this case the

VC-dimension happens not to be a tight lower bound.

Theorem 3.6

opt(C (n)) > max [log(e + 1)J
- <=1

where m = l'i=x p'.

Proof Let m = I p•' be a number less than or equal to n with a maximal number

of divisors. An adversary trying to force a learning algorithm to make many mistakes

would start by giving m as a positive instance. The adversary can force the algorithm

to do a binary search for the value of each exponent as follows. After m, the next set of

instances begin with pel /2J I,>2 pi , and continues with various exponents for Pl. The

algorithm can be forced into [log(el + 1)J mistakes since there are el +1 choices for the

exponent of pl. The next set of instances all have the exponent of pi set to its correct

value, force the algorithm to search for the value of the exponent of p2, and have the

exponents of the primes starting with p3 set to ei. O

The halving algorithm's mistake bound is just slightly above optimal, since in the

notation of Theorem 3.6 it is 1 + max,,,<,, log(e + 1)].

We can use Theorem 3.6 to obtain a somewhat better bound on opt(Ck(n)) than

the one given by the VC dimension.

Corollary 3.2

opt(Ck(n)) k max Llog e + 1m<n i=1

where m = n'I=1 P?'.

Proof The method used by the adversary in the proof of Theorem 3.6 can be easily

extended to the general case. There are k rounds, and in each round the adversary

gives examples with all components but the k-th set to 0. For the k-th component the

adversary gives the values he gave in the proof of Theorem 3.6. O

3.3.5 Generalizations

Arbitrary Euclidean domains

We need not limit ourselves to submodules of Zk. Algorithm SM can in fact learn

submodules of a free D-module for any Euclidean domain D. Careful examination of

the algorithm shows that it does not rely on any properties of Z not possessed by all

Euclidean domains. This generalization gives us learning algorithms for various exotic

domains such as k-tuples of Gaussian integers. Also, as we mention below, taking D

to be a field, we obtain an algorithm for learning vector subspaces.

In order to analyze the performance of algorithm SM in this case, we need to

introduce some definitions.

DEFINITION. Let D be a Euclidean domain. Let a E D*. We define the length of

a, l(a), to be the total number of primes in a prime factorization' a = p1p2 .Pr, pi

prime, of a. If a is a unit, then define l(a) = 1.

Example: For a E Z*, a = 1fl p, 1(a) = e.

DEFINITION. Let S C D*. Define I(S) = max-Es l(a).

Example: If F is any field, then for any S C F*, I(S) = 1.

In the general case, Theorem 3.1 becomes:

Theorem 3.7 The mistake bound of the submodule algorithm is k + kl(S), where S C

D* is the set of all nonzero elements of D in all instances seen by the algorithm.

The proof is a straightforward modification of the proof of Theorem 3.1.

Remark: Notice that for n E= Z, the measure l(n) is bounded by log a (and equal

to log a when a is a power of 2), so we do get Theorem 3.1 when we specialize Theo-

rem 3.7. In fact, we could have used the tighter bound of k + kl(n) in the statement of

Theorem 3.1.

Cosets of submodules

A simple trick allows us to generalize the class of concepts we can learn from submodules

to arbitrary cosets of submodules (viewing the submodule as an abelian group).

The algorithm still responds, "Negative" until it makes a mistake on some positive

instance x. We now start to run the basic algorithm given in Section 3.3.1, except that

we first subtract x from every instance. Thus, at a total cost of one extra mistake,

arbitrary cosets can be learned.

1As is the case for Z, every nonzero, nonunit element of an arbitrary Euclidean domain has a unique
prime factorization up to order and multiplication by units.

3.4 Applications of modules

3.4.1 Abelian groups

Algorithm SM efficiently solves the learning version of the word problem for finitely

generated abelian groups. We begin with a brief review of the word problem for groups.

(A more complete discussion may be found in many textbooks; see Magnus, Karrass,

and Solitar [35] for instance.)
Fix an infinite alphabet of symbols, E = {, a22,...}, and form the new sym-

bols •" ,- 1, . . . Let E-1 = ({j'o-1,...}. Let E; = J{a,..., k} and let Ek1

{oj',...,· }. Let Wk = {(w,k) : w E (Ek U Ek')*}. WV is the set of all words

on k letters. (Technical note: It is more traditional to specify k as a separate input.

We eventually want to develop learning algorithms that work for arbitrary k, however.

Thus it is convenient to make k a part of our instances.)

An instance of the word problem is a finite set S of words from Wk for some k,

plus one additional word w E Wk. The words in the set S form the presentation of a

group G that is unique (up to isomorphism). The problem is to determine whether the

element of G represented by w is the identity element of G.

For those unfamiliar with presentation theory, we can make the preceding concrete.

Intuitively the idea is that G has k generators, gl,-.., gk, and there is a map a : Wk -* G

defined by

(cri) = g;

a(ww,,,) = a(w1) a(w2). (3.1)

The words in S all map to I, the identity element of G. The problem is to determine

whether a(w) = 1.

One way to obtain such a group G starting with Wk is as follows [351. Throughout,

if w = S1S2 -s,n is a word in Wk, we denote by w -1 the word s 1'... s-1 which we

call the inverse of w. (If si E E-1, then define s71 to be the symbol in E that Si is

the inverse of.) We start by defining an equivalence relation -, on words in Wk. We

say that w, " w2 if applying the following operations a finite number of times to w,

transform it to w2.

1. Inserting any word in S, the inverse of any word in S, oar -1, or •-iu between

any two symbols of wl, or before wl, or after wl.

2. Deleting any word in S, the inverse of any word in S, aoai', or ari-a if it forms

a block of consecutive symbols in wl .

The equivalence classes of Wk induced by ~ form the elements of our group. Mul-

tiplication is defined by [wl] - [w21 = [wlp 2]. The mapping a is defined by a(ai) = [ai].

It is well known that the arbitrary word problem is undecidable. We, however, are

only concerned with abelian groups.

To make the word problem into a learning problem, we define the instance space

to be UkWk. A concept c C Wk is in the concept class of interest to us if there is an

abelian group G generated by k elements g, ... ,g9k and a map a defined as in (3.1),

and c = a-=(I).

We solve this learning problem by using our submodule algorithm. First we need

to see how to write this problem as a submodule problem. Let pk : Zk -+ Wk be the

map defined by

pk(Z1, ... , k) = o ".". k

where jo is defined to be A (the empty word), and o", is defined to be (a-I)" for
positive n.

In the other direction, let rk : Wk -+ Zk be the mapping that counts letters,

ir(w) = ((number of a1 E w) - (number of c- 1),...,

(number of ak E w) - (number of -k1 E w)). (3.2)

We omit the subscript on p and 7r whenever it is clear. Notice that Irk O pk is the identity

map for Zk.

Intuitively, if we restrict our attention to commutative groups (and languages), then

p is for practical purposes an inverse of 7r, since it is always the case that w e p(7r(w))

where , is the equivalence relation defined above. Thus we can use r to map our

instances to Zk. Throughout this section, we switch back and forth between thinking

of our instances as coming from Wk and Zk.

Formally, our instances come from Wk, and we know there is a homomorphism

a from the group on Wkwith operation concatenation to a commutative group G.

Instances are labeled positive if they are in the kernel of a.

Since the composition v = a o p is a homomorphism from Zk to the abelian group

G, ker v must be a submodule of Zk. Hence if we can show that lr(w) E kerv if and

only if w E ker a, then all we need do is use 7r to map all our instances to Zk (keeping

the label the same), and run our submodule algorithm.

We noted above that p(Ir(w)) %, w, so a(p(r(w))) = a(w). Thus, as desired, it is

the case that ir(w) E ker v if and only if w E ker a.

3.4.2 Some commutative languages

We can also use algorithm SM to learn certain classes of commutative languages with

a very good mistake bound. (We call a language L commutative if w E L => all

permutations of w are in L.) Among these classes is the class of commutative zero-

reversible languages. By way of contrast, Angluin [3] provides a family of algorithms

for learning the k-reversible languages from positive samples. Those algorithms achieve

correct identification in the limit, but may make a very large number of mistakes.

Throughout this section, E = {al,..., ak} is the alphabet that regular languages

are over, and k is IEJ. We define E- 1 to be {a-1,..., •'}, and let r be the map 7rk

defined above in equation (3.2).

Roughly speaking, we can learn any language L whose image under 7r is a coset of a

submodule of Zk. To be more precise, however, we must take account of the fact that

languages are defined only over E, so their images under 7r are always be k-tuples of

nonnegative numbers. If S C Zk, let us define

S+ = sx xk... kES Iz > 0, 1 < i < k}.

We call S+ the nonnegative restriction of S.

Theorem 3.8 Let C be the class of all commutative languages L such that 7r(L) = N +

for some N E Zk that is the coset of a submodule of Zk. We can can learn C with a

mistake bound of 1 + k + k [log n] where n is the length of the longest instance seen.

Proof We simply apply the map r to instances and then use the coset modification of

algorithm SM. O

Remark: There are some elements x E N such that p(x) ' L, and those elements

are never seen by our algorithm. That does not cause problems, however, since an

absolute mistake bound must hold no matter which subset of the instances is presented

to the algorithm.

Notice that not all the languages in C are regular. For instance, C contains the

language

L = {wlw contains two times as many al as oz2}

which is not regular.

In the remainder of this subsection we show that the commutative zero-reversible

languages are also in C. For the sake of convenience, we repeat the definition of zero-

reversible language [3] here:

DEFINITION. A DFA is formally a 5-tuple, (Q, E, , ,qo, F) where qo E Q, F C Q,

and 8 is a partial function from Q x E to Q. The elements of Q are called states; 6 is

called the transition function; qo is called the initial or start state; the states in F are

called accepting states. Such a DFA is zero reversible if (1) it has at most one accepting

state, and (2) no state has more than one incoming transition for any letter a E E. We

say that a regular language L is zero reversible if L is accepted by some zero-reversible

DFA.

Every regular language is accepted by a minimal state DFA that is unique up to

the naming of the states. We call such a DFA canonical. Throughout the following

discussion we restrict our attention to canonical DFAs. This restriction causes no loss

of generality, since we are trying to devise learning algorithms which receive only words

from E* as their inputs. We note some properties of canonical DFAs that we will use:

1. Every state is reachable from the start state.

2. If the language is commutative and word v is any permutation of word w, then

6(q, w) = S(q, v) for every state q.

(Further discussion of canonical DFAs can be found in automata theory texts such as

Hopcroft and Ullman [24].)

Lemma 3.2 Let L be a commutative zero-reversible language which has as its canonical

accepting DFA some M = (Q, E, 6,qo, F) with F = {qo}. Then r(L) is the nonnegative

restriction of some submodule of Zk.

Proof Since L is zero reversible, the behavior of the DFA for L is well defined over

EUE - '. To make that notion precise, define the new DFA M' = (Q, EUE - 1 , qo, {qo}),

where

6(q, a) if a E E
6'(q, a) = r such that 6(r, a- 1) = q if a E E-1 and such r exists

undefined otherwise

We will show that 7r(L(M')) is a submodule of Zk . Since L = L(M') n E*, this is

sufficient to complete the proof.

First we argue that L(M') is commutative. It is sufficient to show that for all q E Q,

6'(q, ab) = 6'(q, ba) for arbitrary a, b E E U E-'. (Actually we will not consider any

letter that occurs in no word in L, or the inverse of any such letter.) There are three

cases:

1. Both a, b E. In this case, 6' is the same as 6.

2. Both a, b E E-1. Say a = a-1 and b = b-', where &,b E E. Now 6'(q, ab) must

be some state r such that 6(r, ba) = q. Since M is a canonical machine for a

commutative language, 6(r, a&) = 6(r, 1&) = q. Therefore 6'(q, ba) = r as well.

3. The letter a E E, and the letter b E E- 1. Again, say b = b-1 where b E E. Now

let r = 6'(q, b), let s = 6'(r,a), and let t = 6'(q, a). 6'(q, ba) is obviously s. Now

we need to calculate 6'(q, ab) = 6'(t, b).

It must be that 6(r, ab) = 6(r, ba). Now since r = 6'(q, b), it follows that 6(r, b) =

q. Therefore t = b(r, ba) = 8(r, ab) = 6(s, b). Thus, as desired, s = S'(t,b). (See

figure 3-1.)

Now we must show that 7r(L(M')) meets the submodule properties: The all zero

tuple is 7r(A), and A E L(M'), so ir(L(M')) contains the identity element.

Now 7r(w 1) + 7r(W 2) = r(W1 - W2), and if both w, and w2 are in L(M'), then so is

wl - w2 . Thus 7r(L(M')) is closed under addition.

Figure 3-1: Detail of proof of Lemma 3.2: b(q, ab) = 6(q, ba).

Multiplying the tuple for word w by positive integer n corresponds to taking the

concatenation of n copies of w, so 7r(L(M')) is closed under nonnegative integer multi-

plication.

Finally, we must show that if w E L(M'), then -ir(w) E ir(L(M')). Let w =

sIs2 ... sk and define w- 1 = lsS 1 ... sk1 , (where if si E E-1, then si1 is the letter

from E that si is the inverse of). Observe that r(w-') = -ir(w). It is clear that the

path through the machine traveled on symbols sk ... s "1 must be the reverse of the

path traveled on the symbols in w; thus w- 1 E L. 0

Theorem 3.9 Let L be an arbitrary commutative zero-reversible language. The image

of L under ir is the nonnegative restriction of a coset of a submodule of Zk.

Proof Let M = (Q, E, 6, qo, F) be the canonical DFA accepting L. Since L is zero

reversible, F consists of exactly one state. Call that state qf. If qf = qo, then Lemma 3.2

applies and we are done.

Otherwise, let M' be the extension of M from alphabet E to alphabet E U E-1 in

a manner analogous to the proof of Lemma 3.2. The image under r of the set X of

strings z such that S6(qo, x) = qgo is a submodule by Lemma 3.2.

Let w be any string in L. The language accepted by M' is just the set

w I x E X}.

Hence r(L(M')) = r(w)+r(X) which is a coset of the submodule r(X). Since L(M) =

L(M')+ , we are done. O1

Remark: There is in fact a strong connection between the zero-reversible languages

and the word problem for abelian groups, which we discussed in the previous subsection.

One can show that the transition diagram of the canonical DFA for a zero-reversible

language forms a Cayley graph, or graph of a group. (See such books as [12, 18, 35] for

a discussion of Cayley graphs.) Furthermore, if the language is commutative, then the

graph is the graph of an abelian group.

Corollary 3.3 We can learn the class of zero-reversible commutative languages with

an absolute mistake bound of

1 + JIE (1 + Rog nl)

where n is the length of the longest instance seen.

Proof This follows immediately from Theorems 3.8 and 3.9. O

Corollary 3.3 is somewhat surprising in light of the results of Pitt and Warmuth [42].

They show that there is a particular subset of the class of commutative zero-reversible

languages (the "counter languages") for which the minimum consistent DFA problem

cannot be approximated within any polynomial.

Vector subspaces

If we generalize from Z-modules to F-modules for an arbitrary field F, we obtain the

obvious algorithm for learning subspaces of a vector space with a mistake bound of

the dimension of the subspace being learned. (This algorithm is also a special case of

Shvayster [50].)

Chapter 4

Learning from noisy data

4.1 Introduction

In Chapters 2 and 3, we have discussed certain learning algorithms. Implicit in our

analysis of those algorithms was the assumption that the examples input to the learner

were correct. Thus if 17 was a positive instance of some concept, which was output by

EXAMPLES, then we assumed that our learner received the example (17, +) and not

(71, +) or (17, -). In the real world, however, we are not always so fortunate. Often

our data will be afflicted by noise. In this chapter we will examine what the effects are

of different sorts of noise.

Some of the very first algorithms proposed for pac learning depended critically on

the assumption of perfect, noiseless data. It was immediately recognized that this

dependence is undesirable, and in several slightly later theoretical learning papers [51,

5, 25, 31], algorithms were presented that could withstand some amount of various sorts

of noise.

In the theoretical literature, two models of noise have been studied so far to deter-

mine their effect on pac learning. (Quinlan [44] has done an interesting empirical study

of the effects of different sorts of noise on learning algorithms.) One is malicious noise

[51]: when the learner requests an example, with some probability v, an omnipotent,

omniscient adversary gets to replace the example with any example of the adversary's

choice. The goal of this model is to capture the worst possible sort of noise. Kearns and

Li [25] show that, given certain very minimal assumptions, in order to learn a concept

class with this sort of noise model, the noise rate must be strictly less than f/(1 + e)

where e is as usual the accuracy parameter.

The other model of noise that has been studied is random classification noise. In

this model, when the learner requests an example, with probability 1- v the learner gets

the correct example; otherwise the learner receives the example with all its attributes

unaltered by noise, but with the wrong label. Angluin and Laird [5] show that the

information theoretic bound on learning with such noise is v < 1/2. They further show

that any algorithm which works by choosing as its output concept some concept which

minimizes disagreements with a polynomial size set of examples meets this bound, and

also give an efficient algorithm for learning kDNF for any v < 1/2.

In this chapter we show that these two models of noise can be "pushed towards

one another." We exhibit a more severe model of noise than random misclassification

(malicious misclassification) for which we can still tolerate v < 1/2. On the other

hand, we show that even with a much gentler model of noise than malicious noise

(random attribute noise) any algorithm which works by minimizing disagreements can

only tolerate v < f.

4.2 Notation

The definition of pac learning (from noiseless data) assumes that the learner trying

to learn concept c has available to it a black box or oracle called EXAMPLES, and

that each call to EXAMPLES returns a labeled instance, (x, s). We will introduce new

oracles which we will use to model the case where the labeled examples given to our

learner are somehow corrupted by noise.

To obtain the malicious noise model we will use the malicious error oracle, MAL,.

To obtain the most benign error model, the random misclassification model, we will use

the random misclassification oracle, RMC,. In between we introduce two new oracles,

the malicious misclassification oracle, MMC,, and the random attribute error oracle,

RAT,. Each of these four oracles is defined with respect to a fixed target concept c E C

and a fixed probability distribution P on on the instance space.

Each of these oracles represents some sort of noisy version of EXAMPLES. The

"desired," noiseless output of these oracles would thus be a correctly labeled point

(x, s), where x is drawn according to P. Now we describe the actual outputs of these

oracles.

* When MAL, is called, with probability 1 - v, it does indeed return a correctly

labeled (x, s) where x is drawn according to P. With probability v it returns

an example (x, s) about which no assumptions whatsoever may be made. In

particular, this example may be maliciously selected by an adversary who has

infinite computing power, and has knowledge of c, P, v, and the internal state

of the algorithm calling this oracle. This oracle is meant to model the situation

where the learner usually gets a correct example, but some small fraction v of the

time the learner gets noisy examples and the nature of the noise is unknown or

unpredictable.

* When RMC, is called, it calls EXAMPLES to obtain some (noiseless) (x, s), and

with probability 1 - v, RMC, returns (x, s). With probability v, RMC, returns

(x, i) (i.e., x with the wrong label). In this model the only source of noise is

random misclassification.

* When MMC, is called, it also calls EXAMPLES to obtain some (noiseless) (x, s),

and, with probability 1 - v, MMC, returns (x, s). With probability v MMC,

returns (x, 1) where 1 is a label about which no assumptions whatsoever may be

made. As with MAL, we assume an omnipotent, omniscient adversary; but in

this case the adversary only gets to choose the label of the example. This oracle

is meant to model a situation where the only source of noise is misclassification,

but the nature of the misclassification is unknown or unpredictable.

We consider the oracle RAT, only when we are learning boolean functions. RAT,

calls EXAMPLES and obtains some (xl - -x,,; s). RAT, then adds noise to this

example by independently flipping each bit zi to ti with probability v for 1 <

i < n. Note that the label of the "true" example is never altered by RAT,. This

oracle is meant to model a situation where the attributes of the examples are

subject to noise, but that noise is as benign as possible.

Now we can define what it means to pac learn given noisy examples:

DEFINITION. We say that algorithm A pac learns C from noisy examples of type 0,

if and only if for every c E C, for every probability distribution on X, for every positive

e and 6, algorithm A, given only e, S access to oracle 0, for c, and an upper bound vb

on v, meets the following two criteria.

Learning criterion Algorithm A outputs some representation of a

concept c' such that

Pr [c' is an e-approximation of c] > 1 - 6

where the probability is taken over the output of 0, and any coin

tosses A may make.

Efficiency criterion The running time of A is bounded by some polyno-

mial function of 1/e, 1/6, 1/(1 - 2vb), the length of an instance, and

the length of the target concept.

We define s-pac learning from noisy examples in an analogous manner.

Notice that this definition only requires that the algorithm be given a bound on the

noise rate. In fact the real source of examples for the algorithm may be 0, for any

0 < v < Vb.

DEFINITION. The optimal error rate for concept class C given errors of type 0,

E(C, O) is defined to be the largest v such that there exists some algorithm A which

s-pac learns C from noisy examples of type 0,.

In some cases we will only consider those learning algorithms which work by drawing

a set S of (noisy) examples and outputting some c E C such that the number of examples

in S which c classifies differently from their labels is minimized.

DEFINITION. The optimal error rate for algorithms which work by minimizing dis-

agreements on concept class C given errors of type O, EMD(C, 0), is defined to be

the largest v such that there exists some algorithm A which s-pac learns C from noisy

examples of type O, by minimizing disagreements.

The above definitions don't mention computation at all. We'll say that the optimal

polynomial time error rate for concept class C given errors of type O, EP(C, 0O) is

the largest v such that there exists some algorithm A which pac learns C from noisy

examples of type 0,, and analogously for EMDP(C, 0).

4.3 Main results

4.3.1 Attribute noise

Let us define a concept class C to be distinct if there are concepts cl, c2 E C and points

u and v in the domain of C satisfying u, v E cl, u ' c2 , and v E c2. Kearns and Li [25]

show effectively:

Theorem 4.1 (Kearns and Li) Let C be a distinct concept class, and e the accuracy

parameter. Then E(C, MAL) < e(1 + e).

(Their definition of distinct is slightly different because they work with the two button

model of learning.)

Now let us restrict our attention to concepts which are boolean functions. We'll

say a concept class C = U =1 C, is instance distinct if for each n there are concepts

ci,c 2 E C, and an instance u in {0,1}" satisfying cl(u) : c2(u) and for all v : u,

cl(v) = c2(v) Thus for a concept class to be instance distinct, all that is required is

the existence of two concepts which agree on every instance in the domain save one.

Most common boolean concept classes, including kDNF, DNF, CNF, etc., are not only

distinct but also instance distinct.

For instance distinct concepts, restricting our attention to algorithms which work

by minimizing disagreements, we get only slightly weaker results than Kearns and Li

[25] when we substitute the much gentler oracle RAT, for MAL,:

Theorem 4.2 Let C be an instance distinct concept class, and e the accuracy parame-

ter. Then EMD(C, RAT)< e.

Proof We use the technique of induced distributions [25].

Fix n, and let c1 , c2 be the two concepts which cause C to be instance distinct. Let

u be the instance in the domain on which el and c2 differ, and let v be any instance in

the domain that differs from u in only one bit position.

Now assume our algorithm is trying to pac learn to accuracy e, and fix the prob-

ability distribution P on the domain which assigns probability e to u and 1 - e to

V.

Say without loss of generality that cx(u) = c1(v) = c2(v) = +, and c2(u) = -. In

the absence of noise, when our algorithm obtains examples from the oracle, it will see

the following distribution:

Concept

Cl

C2

(u,+) (u,-) (, +) (v,-)
e 0 1-e 0

0 -e 0

If, however, the examples come not from EXAMPLES but from RAT,, the examples

will have the following distribution (ignoring instances other than u and v):

Concept

Cl

C2

(u, +) (u, -) (v,+) (v,-)
,eP + (1 - e)v~n-1 0 (1 - e)~" + EvPn-~ 0

(1 - e),Fn- I n (1 -)FEVn- 1

where P = 1 - v.

Now, in the case where c2 is in fact the correct concept, we must have that the

"observed mistake rate" of c2 is strictly less than the observed mistake rate of cl. Since

cl and c2 classify all instances other than u identically, this amounts to:

(-(1 V1 - v)1-x < f(1 -)n (4.1)

which simplifies to v < e as desired. O

We can define an attribute noise oracle that is somewhat more gentle than even

RAT,, and obtain a somewhat weaker bound. Oracle RAT,' will obtain a correct

example (x1 ... x,; s) from EXAMPLES, and with probability 1 - v output that ex-

ample unaltered. Instead of altering each bit with probability v like RAT,, RAT,'

will with probability v pick some 1 < i < n randomly and uniformly, and output

(x 1 , x2,... t, 4,..., xn- 1 , x,; s) (i.e., the correct example with exactly one of its attribute

bits flipped).

Corollary 4.1 Let C be an instance distinct concept class, and e the accuracy param-

eter. Then EMD(C, RAT') < ne.

Theorem 4.2 and its corollary are somewhat surprising, especially since we will

see below that much larger amounts of malicious classification noise can be tolerated.

These results are sharply different from those of Quinlan [44], who found empirically

that attribute noise was less harmful than classification noise. Perhaps the difference

comes about because the definition of pac learning causes us to examine worst case

probability distribution on the instance space.

We stated Theorem 4.2 and its corollary in the one-button model of learning. It

is easy to convert these results to the two-button model of pac learning by using the

techniques of Haussler et al. [21].

Note that it is crucial in obtaining the above results that one only consider al-

gorithms that work by minimizing disagreements. In fact, one can pac learn kDNF

getting examples from RAT,, for any v < 1/2, by using a different strategy [49]. That

algorithm does, however, depend on the precise noise rate v-not merely a bound on

v-being given as an input.

4.3.2 Misclassification noise

For the most benign errors, those generated by RMC,, Angluin and Laird have shown

that s-pac learning is possible whenever v < 1/2. In particular, they showed that a

modified version of the static consistent algorithm specified in Chapter 2 will work.

There are two key modifications. First, the sample size m must depend on some

bound vb on the noise rate v in addition to the usual parameters.

Also, we cannot simply pick some concept c E C that agrees with all of the labels

of the instances in the sample. Since those labels are noisy, there may not be any

such c. For every concept c E C, define d,, the disagreement number of c, to be the

number of labeled instances (x, s) in the sample for which c(x) # s. The disagreement

rate of c is defined to be dc/m. The output of the learning algorithm which tolerates

classification noise is any c. with a minimal disagreement number (or, equivalently, a

minimal disagreement rate.)

The following theorem shows that this algorithm indeed pac learns:

Theorem 4.3 (Angluin and Laird) Let C be any finite concept class.' If we draw

a sample of size
m = 2 In (2i (4.2)

e2(1 - 2vb)2

from RMC, for any v < vb < 1/2, and find any hypothesis c. with a minimal disagree-

ment number, then

Pr [c. is an e-approximation of the target concept] > 1 - 6.

Remark: Laird [31] has shown that in fact m = O (1/e) rather than m = O (1/e2)

is sufficient.

Before proving Theorem 4.3, we first introduce a lemma from probability theory

that we will need for this proof, as well as elsewhere throughout this thesis.

Lemma 4.1 (Hoeffding's Inequality) Let X 1 , X 2, - - , Xm be independent 0-1 ran-

dom variables each with probability p of being 1. Let S = j'7 Xi. Let t and a be any

positive constants.

Pr[S > pm + tm] < e- 2mt2 (4.3)

Pr[S> am] < e- 2m(a - p)2 (4.4)

Pr[S < m] < e-2m(P- p)2 (4.5)

for a > p and f/ _ p.

1Recall from Chapter 2 that we consider a concept class C = U"•_l 1C, to be finite if ICnI is finite for
every n.

Proof See Hoeffding [23]. O

What Hoeffding's Inequality says intuitively is that if we run m Bernoulli trials each

with probability of success p, then the chance of getting a number of successes different

from pm by a constant fraction is exponentially vanishing.

Proof of Theorem 4.3.

Our examples have random misclassification noise with noise rate v. (The rate v is

fixed, but all the learning algorithm knows is that the noise rate is between 0 and ub.)

Consider a concept c which disagrees with the target concept ct on probability weight p

of instances in the instance space. The expected disagreement rate of c with a sample

from RMC, is

E [disagreement rate] = (1 - v)p + v(1 - p). (4.6)

For the target concept the expected disagreement rate is simply v. For any E-bad

concept, the expected disagreement rate is at least v+ (1 - 2v). The difference between

those two rates, which we will denote by g (for gap) is

g= (1 - 2v) (4.7)

Se(- 2vb). (4.8)

As long as the measured disagreement rate of the target concept is less than its

expectation plus g/2, and the measured disagreement rate of every e-bad concept is

greater than its expectation minus g/2, then every concept with a minimal disagreement

rate must be e-good, which is what we need for pac learning.

By Hoeffding's Inequality we have that the probability that the disagreement rate

of the target concept exceeds its expectation by as much as g/2 is at most

e-2(9/2) 2m <
2 ICI'

Similarly, the probability that any one particular e-bad rule has a disagreement rate

as much as s/2 less than its expectation is at most 6/2 JIC, so the probability that any

e-bad rule does so is at most 6/2. Thus, as desired the probability of outputting an

e-bad rule is at most 6. O[

In fact, malicious misclassification is no more harmful:

Theorem 4.4 Theorem 4.3 holds with RMC, replaced by MMC,.

Proof The argument is similar to the proof of Theorem 4.3, except that now we must

consider what happens if our examples are maliciously misclassified.

The difference between RMC, and MMC, is that in MMC,, the fraction v of the

time that "the coin toss comes up heads," the devil may choose not to misclassify the

example. The devil may thus make some incorrect concept bad rule appear better to

the learner than it would if the noise were purely random.

Let C be the event that the disagreement number of the target concept is less than

the disagreement number of any e-bad concept.

In the proof of Theorem 4.3, the way we showed that we get an e-good rule with

probability at least 1 - 6 in the case of RMC, was to show that Pr [C] > 1- 6. If event

C occurs when the examples are randomly misclassified, then it will still occur even

if the devil chooses not to misclassify some (or all) of the examples misclassified by

RMC,. Not mislabeling may cause the disagreement number of some c-bad concepts

to decrease by 1 (or to increase by 1), but it definitely causes the disagreement number

of the target concept by 1, so if event C occurs with mislabeling, then it still occurs

without mislabeling.

In fact, this reasoning would hold even if the devil got to switch bad labels. That

is to say, if the sample returned by RMC, caused event C to occur, and that sample

contained the two labeled instances (xl,true label of xl) and (x2 ,wrong label for x2),

then if those two labeled instances were replaced in the sample by (xl,wrong label for

zl) and (x2,true label of X2), then event E would still occur. O

Corollary 4.2 Theorem 4.4 still holds for static pac learning even if MAL, is replaced

by a noise model where first the entire sample is drawn from EXAMPLES and then

the adversary is allowed to pick any subset of the sample up to a fraction v of the total

sample to mislabel.

Our techniques for handling malicious misclassification hold up computationally:

Angluin and Laird [5] give an algorithm to polynomial time learn kDNF with in the

presence of noise from RMC, for any v < 1/2; we can strengthen that algorithm to

tolerate noise from MMC, for any v < 1/2, thus showing:

Theorem 4.5 For any co < 1/2, EP(kDNF, MMC) > co.

The proof follows from the same sort of modification to the proof for the case of

RMC, as was used in the previous theorem. Again, the algorithm will in fact tolerate

the somewhat worse sort of noise described in Corollary 4.2.

Note that MMC,, and even more so the oracle described in Corollary 4.2, are very

strong models of misclassification noise. In particular, the latter could be used to well

model the case where "borderline" instances from the domain are misclassified much

more often than "obvious" instances-a case that is appealing to intuition, and that

Amsterdam [2] suggests be studied as a more realistic alternative to purely random

misclassification.

Chapter 5

Learning concepts reliably and

usefully

5.1 Introduction

The pac learning model has, as we discussed in Chapter 2, many desirable features.

However, there is one thing about it that certainly is not desirable: there are concept

classes that we cannot learn within the pac learning model (given various cryptographic

assumptions generally believed to be true) [52, 41, 42, 27].

The largest concept class that an optimist might hope to be able to learn efficiently

in some model of concept learning is the set Cp ly of all concepts that can be represented

by polynomial size circuits. For any larger class, just deciding whether a given instance

is in a particular concept may be computationally intractable. The infeasibility of

learning CP"y in the pac learning model was shown in Valiant's original pac learning

paper using cryptographic tools from Goldreich, Goldwasser, and Micali [52, 15].

In this chapter we examine a model of learning with a more powerful teacher than

the EXAMPLES oracle of the pac learning model that allows us to learn this "most

65

optimistic" concept class.

5.1.1 Hierarchical learning

The way we escape the infeasibility of learning arbitrary concepts is by first learning

relevant subconcepts of the target concept, and then learning the target concept itself.

Learning by first learning relevant subconcepts has been a useful technique elsewhere

in the field of learning:

* Cognitive psychologists believe that one way humans learn is by first organizing

simple knowledge into "chunks," and then using these chunks as subconcepts in

later learning [36].

* In the artificial intelligence community, the builders of the Soar computer learning

system have built a system that saves useful "chunks" of knowledge acquired in

the current learning task for use as subconcepts in future learning tasks [30, 29].

Also, the SIERRA system learns how to do arithmetic in a manner broadly similar

to what we suggest; it learns "one subprocedure per lesson." [53]

* Within the framework of theoretical inductive inference, Angluin, Gasarch, and

Smith [4] recently showed how to learn certain otherwise unlearnable recursive

functions by first learning relevant subconcepts.

5.1.2 A new variation on the Valiant model

We introduce here a new definition of learning which is very similar to but more strin-

gent than pac learning. In pac learning, the learner must give as output a concept

in whatever representation is being worked with-say circuits. Our learner is instead

supposed to give a (polynomial time) program taking instances as input, and having

three possible outputs: "Yes," "No," and "I don't know."

DEFINITION. We call learning algorithm A reliable if the program output by A

says "Yes" only on positive instances, and says "No" only on negative instances of the

target concept.

Of course, given that definition of reliable, it is very easy to design a reliable learning

algorithm: Have the learning algorithm look at no examples, and output the program

which just gives the useless answer "I don't know" on all instances. Informally we call

a learning algorithm output useful if the program it outputs says "I don't know" on

at most a fraction e of all instances, where e is an input to the learning algorithm.

Formally, we make the following definition, analogous to pac learning:

DEFINITION. Let C be a class of concepts on domain X = U•1 =X,. We say

algorithm A reliably and probably usefully learns C if and only if for every positive n,

for every c E C,, for every probability distribution P on X, for every positive e and 6,

algorithm A, given only e, 6 and access to EXAMPLES(c) halts in time polynomial in

n, ICI, ., and -, and outputs a program Q that satisfies the following conditions.

1. For every x E X,, Q(x) = Yes = c(x) = 1, and Q(x) = No = c(x) = 0. (A is

reliable.)

2. With probability at least 1 - b,

S P(x)< e.
Q(x)= I don't know

(A is probably useful.)

The above definition is similar to the definition of pac learning, in that both defi-

nitions require the learner to find some concept that probably agrees with the target

concept most of the time. Our new definition is stronger than pac learning in that we

require, in addition, that the output of learner must never misclassify an instance. It

must somehow "know enough" to say "I don't know," rather than to misclassify.

In this chapter we present an algorithm that reliably and probably usefully learns

the concept class Cply.

5.2 How to learn: sketch

The original definition of pac learning has many desirable features. Not least among

them is that efficient algorithms for pac learning a number of interesting concept classes

are now known. Of course, we do not always know a priori that the concept we want

to learn is going to be in 3CNF or 7DNF or some other given class. We would like

to have an algorithm that can pac learn regardless of what class the target concept is

drawn from. More precisely, we would like to have an algorithm that could pac learn

the class of all functions that can be represented by a polynomial-size boolean formula

(or, similarly, a polynomial-size boolean circuit).

Unfortunately, this goal is unlikely to be attainable. As Valiant explains [52], assum-

ing that one-way functions exist (an assumption which we feel is likely to be correct),

the class of polynomial-size boolean formula is not pac learnable.

Thus we are driven to look for some way of learning arbitrary boolean formulas.

Our solution is to learn in a hierarchical manner. First we pac learn some important

subconcepts of the target concept, and then we pac learn the final concept as a function

of these subconcepts.

To be more precise, our method is as follows: We learn our first subconcept knowing

that it must be some simple boolean function of the instance attributes. We learn each

following subconcept knowing that it must be some some simple boolean function of

the instance attributes and previously learned subconcepts. Ultimately we learn the

original target concept as some simple boolean function of the instance attributes and

all of the previously learned subconcepts.

Consider, for instance, the concept of one's dependents, as defined by the IRS.'

dependent = (> -SupportFromMe) A -'FiledJointReturn

A[(Income < 1900 A (MyChild V MyParent)

V(MyChild A (Age < 19 V IsInCollege))]. (5.1)

One can readily imagine such a complicated definition being too hard to learn from

examples. On the other hand, if we first teach some simple subconcepts, such as

"MyChild V MyParent," and "Age<19 V IsInCollege," and next teach some harder

subconcepts as functions of those, and then finally the dependent concept as a function

of all previously learned subconcepts, then the learning task becomes easier.

Moreover, because we break the target concept into very simple subconcepts, we

can develop a learning protocol that has one very nice feature absent from ordinary pac

learning-our learner knows when it is confused. (Formally, we achieve reliable and

probably useful learning.) Continuing with the above example, we probably do not need

to force our learner/taxpayer to learn the concept dependent perfectly. It is acceptable

if the learner is unable to correctly classify certain unusual, very low probability in-

stances such as, say, the case of "your underage great-great-great-granddaughter when

all intervening generations are deceased." The probability of such an instance occurring

is extremely low. Nevertheless, it would be desirable, if one ever did encounter such an

"ever so great" grandchild, to be able to say, "I don't know if she is an instance of a

dependent," rather than to misclassify her.

Our learner can, if desired, do precisely that--output a short fast program taking

instances as its input and having the three outputs, "Yes" (dependent), "No" (not a

dependent), and "I don't know." This program is guaranteed to be correct whenever

it gives a "Yes" or "No" classification, and moreover, with probability at least 1 - 6

1What follows is, in fact, a great oversimplification of the IRS definition.

it says "I don't know" about at most a fraction e of all people. In short, it meets our

definition of reliable and probably useful learning.

5.2.1 Notation

Before showing how to break our target concept, t, into pieces, we must first specify the

problem more precisely. For convenience' sake only, we assume that t is represented as

a straight-line program: Let the inputs to t be xl,... ,x,, and call the output yr. The

i-th line of the program for t, for 1 < i < 1 is of the form:

Yi = zi,l 1 zi,2 (5.2)

where o is one of the two boolean operators V and A, and every zi,k is either a literal,

or else yj or pi for some previously computed yj (i.e., j < i).2 We say 1 is the size of

such a straight line program.

We will use EB(h) (standing for "Easy Boolean") to denote the set of all boolean

formula that are the conjunction or disjunction of two literals chosen from a set of at

most h. We will often write simply EB when the value of h is clear from context.

Figure 5-1 shows a straight line program for the dependent concept defined in equa-

tion (5.1) above. The expression for every yi comes from the class EB(13). (More

precisely, the expression for yi comes from EB(6 + i).)

5.2.2 An easy but trivial way to learn

As a first attempt to develop a protocol for learning our arbitrary t piece by piece,

we might try the following: Have the teacher supply not only examples, but also

the pieces-the yi. In particular, let the yi be rearranged in some arbitrary order,

2 Note that straight line programs are equivalent to circuits, with lines being equivalent to the gates
of the circuit, topologically sorted.

Figure 5-1: A straight line program for dependent

yj, ... , yj,. Now, each time the learner requests an example, he gets more than just a

labeled example drawn according to P. The learner receives xl Xn,#yjl,..., Yj, (and

its label). Given all this help, it turns out to be easy to learn. It is not hard for the

learning algorithm to determine which of the other variables a given variable depends

on.

This solution is not very satisfying, however, since it requires that the learner receive

a large amount of "extra help" with each and every example. In essence, it would mean

that every time our learner was given an example while learning dependent, he would

have to be told whether it was a child in college, whether it was a relative, and so on.

Our approach is to first teach the learner about yl for a while, assume the learner has

learned yl, then move on to y2, never to return to yl, and so on, yi by yi.

Input variables: FiledJointReturn, >!SupportFromMe, MyChild, MyParent,
Age<19, IsInCollege, Income<1900.
Output: dependent = yr.

y1 = (>1 SupportFromMe) A -nFiledJointReturn2
y2 = MyChild V MyParent

ya = Age < 19 V IsInCollege

Y4 = Income < 1900A y 2

ys = MyChild A hy3

Y6 = y4 V ys

Y7 = y1 A y6

5.2.3 High level view of our solution

The learning proceeds as follows: As in regular pac learning, there is one fixed proba-

bility distribution, P, on examples throughout; the teacher is not allowed to help the

student by altering the probability distribution.

There are I rounds. The teacher moves from round i to round i +1 when the learner

tells him to do so. In round i, the learner is going to learn an approximation to yi.

When our learner requests an example during round i, the teacher gives the learner a

pair, (xl .- x·, s), where x1 ... x , is drawn according to P, and s tells whether xl ... xz

is a positive or negative instance of yi. In other words, in round i, s gives the truth

value of yi;(x ..-. x,,) (rather than the truth value of t(xl . x ,)).

During each round i, the learner tries to (e', 5')-learn yi where c' = E/pl(n) and ,6'=

6/p 2 (n) and where pl and p2 are polynomials to be specified below. This learning task

at first glance appears to be extremely simple, because yi must be a simple conjunction

or disjunction of 1 ... x, and yl,...,yi-, (and perhaps their negations). The catch

is that while the learner gets the true values for x1 ... Xz, he only gets his computed

values for Yl,i, yi-1.

For instance, it might be that the true formula for y3 is yl A Y2. However, the

values of yl and y2 are not inputs to the learning algorithm. Suppose the learner has

pac learned formulas ^A and 2̂ for yl and y2. It may well be that the learner calls

EXAMPLES and gets back a particular xx ... x, , and the information that Y3 (xx ... x,)

is true, but both l1(x ... z,) and Y2(x1 ... x,,) evaluate to false when y1(x1 ·.. x,,) and

yz(x ... x.) are both true.

Our job is to show how to do this learning in such a manner that at the end, when

we have a representation for yl in terms of all the xi and yi, and we substitute the xi

back in for the yi, the final expression, yt(xl z,X) e-approximates the target concept

with probability 1 - 6.

In fact, as we said above, we do something stronger. Our learner not merely pac

learns, but reliably and probably usefully learns.

A key technique

The key technique we use is to have the learner learn and maintain a list of all possible

candidates for a given yi. For each subconcept y, we explicitly maintain the "most

specific" list of the version space representation [37].

The reason the learner can maintain this list is that the set of all the possible

candidates for any particular yi is of polynomial size. Recall that the target function t

is specified by a straight line program. Let K be the total number of possible distinct

lines, zil 0 zi,2.
(n+

K = 8 ()

The important thing to notice is that K is polynomial in n and 1, the size of (the

representation of) the target concept. The exact value of K comes about because each

yi is in the class EB, but the only thing special about EB is that it is of polynomial

size. Our technique will work equally well using any polynomial-size concept class.

We exploit this technique by designing an algorithm with three fundamental parts:

1. In round i we get various examples of yi. We say that an example, (xl -. xz,, s),

is "good" if for every previously learned yi, 1 < j < i, all the formulas in the

list for yj take on the same truth value on x1 .. -,. Since one of the formulas in

the list for yj is the correct one, in every good example all the yj's are computed

correctly. We begin by filtering our examples to obtain a set of good examples.

2. Given good examples, we can be certain of the values of the yj, so we can proceed

to learn yi as a function of the attributes X1 ... X ,, yl,.. ., i-1.

3. Finally, we need something to specify the algorithm that we output at the end of

round 1.

5.3 Detailed specification of our learning protocol

We assume to begin with that the learner is given 1, the length of the straight line

program, at the beginning of the learning protocol. This assumption makes the pre-

sentation simpler and clearer. We show later that the learner need not be given 1.

5.3.1 Learning yi

During each round i, the learner simply needs to learn y, as a function of the input

literals and previous yj and p9. Moreover, the formula for y1 is in the class EB. There

are at most K candidates for the the formula for yi.

In Chapter 2 we saw how to .(d, 6')-pac learn concept yi that is one of at most K

concepts by using the static consistent algorithm.

The learner chooses

m > - In(K) + In (5.3)

and obtains m labeled instances from EXAMPLES. The learner then checks the (at

most K) candidates for the formula for yi one by one until one is found that is consistent

with all m examples, and outputs that candidate. Of course, our proof of the correctness

of the static consistent algorithm depends on the assumption that the instances output

by EXAMPLES are not missing any bits.

We could use the static consistent algorithm for our c', 6' learning of yl, since we

do always get the correct values of the instance attributes when we request a labeled

example in round 1 of our learning. In fact, we use something much like that algorithm,

except that we check all the possible formulas for yl, and "output" the set of all the

formulas that are consistent with all m examples. (Learning yl is merely an internal

subroutine used in the the first stage of a multi-stage learning protocol; we don't really

output anything at this point.)

The idea of using a set here is that if the set is guaranteed to contain the correct

function, then when all functions in the set agree, we know we have the correct value

of yl. Otherwise we know we "don't know" yl-

DEFINITION. Let F = {f1,...,f,} be a set of boolean formulas, each of the

same number of variables, say n. We say F is coherent on xl ... x,n if fi(xl ... x,) =

f2(Z.. ,) =-..= f 5,(x-- ...).

Let F1 = {(fI, fl,2, ... fi,ij } be the set of formulas we learned for yl. Notice that for

an arbitrary example, x1 ... X , if F1 is coherent on X1 -... ,, then the common value

of the formulas must be the true value for yl(xi ... xn). The reason is that we know

the true formula for yl is contained in F1 .

Thus, in order to learn an arbitrary yi, we are led to use Procedure CSL, which

is specified in Figure 5-2. The key thing to notice in Procedure CSL is that once an

example has been "filtered," (in Subroutine GetSample) then-for that example-we

know not only the values of the instance attributes xl ... , z, but also the values of

YI,... Yi-1.

5.3.2 Learning the target concept

Procedure CSL does indeed give us a way to learn our target concept t once we calculate

appropriate values for d and 8'.

Theorem 5.1 Fix a target concept t that is a function of n variables, and some straight

line program for t of length 1. Let K be the number of possibilities for the 1-th line of

the program. Take any 0 < e, 8 < 1. Let e' = e/lK. Let 6' = 6/1. Call CSL(1), CSL(2),

... ,CSL(l). Then,

Procedure ConsistentSetLearner (hereinafter CSL)

Inputs: i; F1, ... , Fi- (previously learned formula sets for yx,..., yi-1);
n, d', and 6'.
Output: Fi, a set of formulas for yi, or "Fail."

Pick m according to equation (5.3).
Call GetSample(m, i).
If GetSample did not return "Fail"

then set F, := {f E EB(i) f is consistent with all m filtered examples}.
else output "Fail."

Subroutine GetSample(m, i)
Repeat until either m "filtered" examples are obtained, or 2m attempts are made:

Obtain an example, x = x l... x,, by calling EXAMPLES.
For j := 1 to i - 1 do

If Fj is coherent for xl ... X ,, y,... - j-1
then label the common value yi
else break the For j loop.

If every Fj, 1 < j < i - 1, was coherent
then consider x to be "filtered," and save it.
else discard x.

If m filtered examples were obtained
then return those m filtered examples
else return "Fail".

Figure 5-2: Procedure CSL

1. with probability at least 1 - 6,

* no call ever returns "Fail," and,

* with probability at least 1 - e every Fi is coherent on a randomly drawn

instance, x 1 ... Xz, and,

2. if every Fi is coherent on x, ... , ,, then yl(xi ... x,·) (making the appropriate

substitutions for intermediate yi) correctly classifies z1 ... -.

Proof Our instance space, X, is {0, 1}'. Let Xi(F 1,..., Fi-1) be all instances x such

that all of F1,..., Fi-1 are coherent on x. The set Xi(F 1,..., Fi-l) contains exactly

those instances that will be successfully filtered by CSL(i) (instead of being discarded

by CSL(i)).
For f E Fi, define

erri(f) = {z E X,(F1,..., F.i-) I f(x) # y;(x)}.

The set erri(f) consists of those instances that might be seen as training instances for

yi that f misclassifies. Let P be the probability distribution on the instance space.

Let us call f E F, good if

P(err,(f)) < SlK
We say that Fi is good if every f E F, is good, and otherwise we say that Fi is bad.

Finally, let us say that CSL(i) wins if the output is a good Fi, and neither a bad F,

nor "Fail."

In the case of CSL(1) we can never fail. It follows from the discussion in Section 2.6

of Chapter 2 that

Pr [F1 is bad] < 6/1. (5.4)

Hence the probability that CSL(1) wins is at least 1 - 6/1.

For CSL(2), there are two ways we could end with "Fail." The first is that we could

fail because F1 is bad. We ignore this possibility, because what we ultimately want to

calculate is

Pr [F1 and F2 win] = Pr [F1 wins] Pr [F2 wins I F, wins].

Thus we need only worry about whether CSL(2) outputs "Fail" in the case where F1

is good.

If F1 is good, then

Pr [one fixed f E F1 disagrees with yl on a random x] < (5.5)

Pr [any f E F, disagrees with yj on a random z] < I (5.6)

since there are at most K formulas in F1. Hence, the probability (given that F, is good)

that F1 is not coherent for a random instance is at most 1 - 6/l. We can use Hoeffding's

Inequality (Lemma 4.1 above) to show that the probability of that happening on more

than m out of 2m trials is at most

e-

which for our purposes is vanishingly small.

Thus the probability that CSL(2) fails given that F1 is good is vanishingly small, so

to determine whether CSL(2) wins we need only determine whether the output F2 is

good given that the sample determining F2 was filtered by a good F1. This probability

is at least 1 - 6/1, and the reason is almost the same as the same as the reason that

the probability that F1 is good is at least 1 - 6/1. If we do not fail when we call

CSL(2), then the probability that F2 is bad is again at most 6/1. The difference is that

now the probability distribution on instances is not P but the conditional probability

distribution P' defined by P'(x) = P(x I x E X 1). However, since P'(x) > P(x) for

all x in the sample used to pick the formulas in F2 , this difference can only cause the

probability that F2 is good to be larger.

The argument for an arbitrary call to CSL(i) is similar to that for CSL(2) and it

shows that

Pr [CSL(i) outputs "Fail" I CSL(1),...,CSL(i - 1) win] < e-(-r)m.

and that assuming CSL(i) does not output "Fail"

Pr [Fi is bad I CSL(1),...,CSL(i - 1) win] < 6 (5.7)

Thus we have that

Pr [CSL(i) wins I CSL(1), ... ,CSL(i - 1) win] 1 - + () (1) (5.8)

Now we compute the probability that all calls to CSL win using what is sometimes

called the law of successive conditioning. Let £i be the event that CSL(i) wins.

Pr ['1 A A ..- A EI] = Pr [E] -Pr [62 I E•] ---Pr [E I 1 A ---A E,-11

> 1-6. (5.9)

Thus the probability that all calls to CSL win is at least 1 - 6. By definition, if all

calls to CSL win, no call outputs "Fail," and all the F, are good. Now we must show

that if every Fi is good, then the total probability weight assigned by P to instances x

for which some Fi is not coherent is at most e.

We showed above in inequality (5.6) that the probability weight P assigns to in-

stances on for which F, is not coherent (given that F1 is good) is at most e/I. Similar

reasoning shows that the probability weight P assigns to instances in X,(F 1,..., Fi-1)

for which F, is not coherent is at most e/l. Hence the total probability weight assigned

to instances for which some F, is not coherent is at most l(e/l) = e as desired. O

Figure 5-3: Algorithm Reliable Learner

Corollary 5.1 There is an algorithm for reliably and probably usefully learning any

concept represented by a polynomial-size circuit gate by gate.

Proof We exhibit the algorithm in Figure 5-3. It is immediate from Theorem 5.1 that

this algorithm has the desired properties. O

Thus we have a simple program that with probability 1- 6 classifies most examples

correctly, and "knows," because it found some incoherent Fi, when it is given one of

the rare examples it can't classify.

On the other hand, if we really want to simply pac learn, and output a boolean

circuit, we can do that as well by doing the following: Pick any formula for y1 from

F1 to obtain a gate computing y1 . Use this gate wherever yl is called for later. In the

same manner, pick any formula from F2 to be a gate for computing y2. Continue in this

Algorithm Reliable Learner

Inputs: n, e, 6, 1, teacher for gate by gate learning of unknown concept c.
Output: Program to classify instances.

For i := 1 to I do
Call CSL(i).
If the call fails

then halt and output a program that classifies all examples "I don't know."
else save the set Fi output by CSL(i).

Output the program that classifies an instance x = x... x , as follows:

For j := 1 to I do
If Fj is coherent for zx ... z,, y,..., yj_

then label the common value of the functions in F- as yj
else halt and output "I don't know."

Output y1.

fashion until we finally have a circuit for yl taking only variables xl ... x,, as inputs.

Corollary 5.2 If we run the process described in Theorem 5.1, and then convert to a

boolean circuit as described above, this process pac learns.

5.3.3 Removing the circuit size as an input

In this section we show that we can still use Procedure CSL as a subroutine for learning

reliably and probably usefully even if the length of the target concept is not known by

the learner.

The idea of the method is that when we know I we spread out our tolerance e by

"using up" e/l per line for a total of e, and similarly for 6. Now, not knowing 1, we "use

up" 4• for line i, for a total of

t 6e < 6e 0 - 1
2i2 < 2 i-2

i=1 i=1

and similarly for 6. Of course that is merely the intuition; we now proceed to the proof.

Theorem 5.2 Call CSL(1), CSL(2), ... , CSL(l) using the values ' = and 6' =

68 in the call to CSL(i). Then

1. with probability at least 1 - 6,

* no call ever returns "Fail," and,

* with probability at least 1 - c every Fj is coherent on a randomly drawn

instance, x1 . . x,· and,

2. if every Fi is coherent on xl,.. ., , then y1(xl ... x·) (making the appropriate

substitutions for intermediate yi) correctly classifies Xli: X -,.

Proof We sill simply give the changes that need to be made to the proof of Theo-

rem 5.1. We now define f E Fi to be good only if

P(x) < 6
- Kr 2i2

XEerr1 (f)

We continue to say that F, is good if every f E F, is good, and that CSL(i) wins if its

output is a good Fi as opposed to either a bad Fi or "Fail".

Equation (5.4) becomes

Pr [F1 is bad] 5 6. (5.10)

Its generalization, equation (5.7), now states that assuming that the call to CSL(i) does

not output "Fail" we have

66
Pr [F, is bad I CSL(1),...,CSL(i - 1) won] < . (5.11)

The chance that a call to CSL(i) outputs "Fail" if all the Fj for 1 L j _ i - 1 are

good is still exponentially vanishing. Thus equation (5.8) becomes

Pr [CSL(i) wins I CSL(1),...,CSL(i - 1) won] > 1 - 66 + (1 . (5.12)

If we again let £, be the event that CSL(i) wins, equation (5.9) now becomes

Pr [E1 A 2A ... A EI] = Pr[1]Pr [E2 1E1] .Pr [El A .. A -1]

66

The agument for the parameter is similar to the argument for the parameter .> 1 - 6.

The argument for the parameter E is similar to the argument for the parameter 6.

O

5.4 Noise

In the previous section we showed how to reliably and probably usefully learn any

concept that can be represented by a polynomial-size circuit. However, the algorithm

given there depends on the fact that the examples given by the teacher were completely

free of noise. In this section we show how that algorithm can be modified to tolerate

noise in the data, albeit with a slight degradation in the learning.

From perfect data we saw that we could achieve

Guaranteed reliable and Pr [useful] > 1 - 6.

In the presence of noise we achieve

Pr [Reliable and useful] > 1 - 6.

Note that for the purpose of applications, this degradation is not as bad as it seems

at first. All our algorithms have sample complexity and running time polynomial in

log(1/6), so we can afford to make 6 very small.

Our results for noise meet the limit for classification noise suggested by Chapter 4.

We do not know how to do as well as the limit suggested there for malicious noise. To

be specific, we show how to tolerate classification noise with a noise rate of up to 1/2,

or how to tolerate malicious noise with a noise rate of up to E/41K.

5.4.1 Classification noise

We begin by showing how to modify Procedure CSL to tolerate noise coming from

RMC,, and then go on to argue that this modification in fact tolerates noise coming

from MMC,. Call this new procedure CSL2.

In the case of classification noise, the learner receives one additional input, vb, a

bound on the noise rate. The learner knows that all the examples come from RMC,

for some fixed 0 < v < v b. Of course the learner is now allowed time polynomial in

1(1 -. 2Vb) in addition to the other parameters.

There are two differences between Procedure CSL and Procedure CSL2. The first

is that the value of m is changed to

m = I2v n (. (5.13)
f2(1 - 2Vb)

2 ('

The second difference between CSL and CSL2 is the way that the formulas for F, are

chosen once a sample of m "good" examples have been obtained. In Procedure CSL2 for

every candidate formula f for yi we calculate di, the number of disagreements between

f and the labels of the teacher for the sample. Clearly 0 < df < m. In Procedure CSL

we simply set F, to be the set of all f such that df = 0. We knew there would be at

least one such f, because in the noise-free case, d2, = 0. Now that there is classification

noise, however, there may not be any f for which df is equal to 0.

Now instead we find a formula f. such that df. is minimal, and set

F, = {f I df < df. + ms/4} (5.14)

where

s = e(1 - 2 b). (5.15)

We formally specify CSL2 in Figure 5-4.

Theorem 5.3 Let E' = E/lK. Let 6' = 6/1. Call CSL2(1), CSL2(2), ... , CSL2(1).

Assume that the examples come from RMC, for some v < vb, where Vb < ". Then,

with probability at least 1 - 6,

* no call ever returns "Fail," and,

* with probability at least 1 - e every F, is coherent on a randomly drawn instance,

S... X2, and,

Procedure CSL2

Figure 5-4: Procedure CSL2

* if every Fi is coherent on x1 , ... , z,, then yj(x 1 , ... , x,) (making the appropriate

substitutions for intermediate yi) correctly classifies xl ... x,n.

Proof We basically want to show that the proof of Theorem 5.1 still goes through. We

proved two key facts about each Fi in that proof. The first was that the true formula

for y1 was guaranteed to be in Fi. The second was that with high probability each Fj

was good, where good was defined to mean that every formula in Fi agreed with y, on

at least probability weight 1 - E/• of the instances. Let us say that an Fi is "very good"

if it has both of those two properties. We now show that with high probability every

Fi is very good. (Because of the noise, we can no longer hope to guarantee that the

true formula for yi is in Fi.) In particular we show that

Pr [yi E F1 and Fi is good I F1,... F.- 1 are all very good] > 1 - S/1. (5.16)

Assume now that F1, F2 ,... , Fi-1 are all very good. That means that we have the

full set of correct attribute bits in the m examples we use to determine Fi (although,

Inputs: i; F1,..., F_-1 (previously learned formula sets); ub, n, e', and 6'.
Output: Fi, a set of formulas for yi, or "Fail."

Pick m according to equation (5.13).
Call GetSample(m, i). (Specified above in Figure 5-2.)
If GetSample returned "Fail"

then output "Fail"
else for every f E EB(i) compute mistake number d1 .

Set dmin := min {d1 }.
for every f E EB(i)

If d1 < dmin + me'(1 - 2vb)/4
then put f in Fi.

of course, some of the labels may be wrong).

We noted in the proof of Theorem 4.3 of Chapter 4 that s specified in equation (5.15)

is the expected gap in disagreement rate between the true formula for yi and any formula

that is not an e'-approximation of the true formula. Thus if we were to make F, the set

of all f such that df < E [dj, + ms/2], then we would have that with high probability,

Fi is very good. Now E [dy;] = vm, but unfortunately we do not know the value v.

Nevertheless, to prove that equation (5.16) holds it suffices to show that the sum of

the probability of each of the following three events is at most 6/1.

1. No formula has a number of disagreements less than E [di,] - ms/4.

2. For the true formula y, we have dy, E [d4,] + ms/4.

3. Every e'-bad formula has at least E [dy,] + 3ms/4 disagreements with the sample.

If both of the first two events occur, then we have that dj, < df, + ms/2, so yi is placed

in Fi.

If both event 2 occurs, then we have that

<d, 5 E [dy,] + ms/4,

and thus that

df, _ E [dy,] + ms/4.

Together with the occurrence of event 3 this guarantees that no c'-bad formula is put

in Fi.

For every formula f we have the E [df] > E [dy,]. (The argument here is somewhat

similar to the proof of Theorem 4.3.) Thus we get from Hoeffding's Inequality that

Pr [fixed f has df 5 E [dy,] - ms/4] < e- 2(s/4)2m

3K1.

Thus the probability of event 1, that any f has a d1 that is too small, is at most 6/31.

A similar argument shows that the probability of event 2 is at most 6/3Kl, and

that the probability of event 3 is at most 6/31.

Given this, the rest of the proof is completely analogous to the proof of Theorem 5.1.

The only difference is that in this case the true formula for yj is in Fi only with high

probability, not with certainty. O

Theorem 5.4 In fact, Procedure CSL2 has the performance specified in Theorem 5.3

even if the examples come from MMC,.

Proof We want to show that the condition specified by inequality (5.16) still holds in

this case. The only difference between MMC, and RMC, is that there may be some

examples that were labeled incorrectly by RMC, that now the devil decides to label

correctly. We show that in spite of any such change of label, if yi was in Fi when the

examples came from RMC, then it still is in Fi, and that no e'-bad formula that was

not placed in F, before is now.

The only way for yi not to be in F, is if some other formula has ms/2 fewer dis-

agreements with the sample than yi has. Changing incorrect labels to correct labels

cannot affect whether that is true. Changing an incorrect label to a correct label may

or may not decrease the number of disagreements for any formula but y, by 1; such a

change must decrease dy4 by 1.

The way we showed that no e'-bad formula was placed in F, was by showing that

every such formula had a number of disagreements at least ms/2 greater than d4,.

Again changing incorrect labels to correct labels cannot eliminate such a gap. O

5.4.2 Malicious noise

The strategy for learning in the presence of a small amount of malicious noise is similar

to the strategy for learning in the presence of classification noise. We only consider

Procedure CSL3

Figure 5-5: Procedure CSL3

malicious noise rates v. e/41K. Given a sample from MAL,, the expected mistake

rate of any must be at most (e/IK) - v. Therefore, there must be a gap g in expected

mistake rates between the true rule and any (eflk)-bad rule of at least

g - T- 2v

- 21K

since v < e/41K.

We exploit this gap by getting a sample of size

mMAL 2 (lnK+ln(6) (5.17)

and putting into our set any rule with a disagreement rate less than v + g/2. The

precise algorithm, CSL3, is specified in Figure 5-5.

Theorem 5.5 Let e' = e/lK. Let 6' = 6/1. Call CSL3(1), CSL3(2), ..., CSL3(1).

Assume that the examples come from MAL, for some v < e/41K. Then, with probability

at least 1 - 6,

Inputs: i; F1,..., Fi-1 (previously learned formula sets); n, E', and 8'.
Output: Fi, a set of formulas for yi, or "Fail."

Pick mMAL according to equation (5.17).
Call GetSample(mm.). (Specified in Figure 5-2.)
If GetSample returned "Fail"

then output "Fail"
else for every f E EB(i)

compute the mistake rate for f
If it is less than ' then put f in Fi.

* no call ever returns "Fail," and,

* with probability at least 1 - e every Fi is coherent on a randomly drawn instance,

S... xn and,

* if every F, is coherent on z 1,...,z , then yt(1, ...,X,) (making the appropriate

substitutions for intermediate yi) correctly classifies z1 ... -,.

Proof sketch: The proof is similar to the proof of Theorem 5.3. We still say the Fi

is very good if y, E Fi and if the set of instances for which any f E Fi disagrees with yi

has probability weight at most el.

Assume now that F1, F2 ,..., Fi-, are all very good, and that in CSL3(i) the call to

GetSample did not return "Fail". In order to show that F, is very good we need the

following to events to occur.

1. The mistake rate of yi must be less than e/21K.

2. Every (E/lK)-bad formula f E EB(i) must have a mistake rate of at least e/21K.

Since the samples come from the malicious error oracle, we cannot simply say that

dy, the mistake number of yi, is the sum of Bernoulli trials. Nevertheless, the worst

thing that the malicious error oracle can do to dy is add one to it every time it affects

the examples. Thus, d4 has expectation no greater than the sum of mMAL Bernoulli

random variables each with probability e/41K of being 1. As usual we use Hoeffding's

Inequality to show that the probability of getting a value as high as 2 (e/ 2 1K)mMAL is

at most (6/2K).

The argument for the second event, an (e/lK)-bad formula having too low a mistake

rate, is similar. C

5.5 Summary and conclusions

In this chapter, we have shown how to learn complicated concepts by breaking them

into subconcepts. The key idea we used was maintaining a list of all possible candidates

(the "version spaces") for the correct subconcept, instead of simply picking some one

candidate. For the purposes of this chapter, we were concerned with the class EB, but

our method is applicable to any polynomial-size class. We expect that this particular

method will prove to have other applications.

We believe this general approach is the philosophically sound way to do inductive

inference, since what distinguishes induction from deduction is that in induction one

can never be completely certain that one has learned correctly. (Kugel [28] contains

an interesting discussion of this point.) It is always possible that one will see a coun-

terexample to one's current favorite theory. This idea of maintaining a list of all the

candidates for the correct "answer" has recently born fruit elsewhere in the field of in-

ductive inference as well, in a new model of recursion theoretic inductive inference [47],

and in a method for inference of simple assignment automata [48].

Another contribution of this chapter has been to introduce the notion of learning

that is reliable and probably useful, and to give a learning procedure that achieves such

learning.

In fact, our learning procedure is in one sense not merely reliable, but even better;

because it has maintained candidate sets for all subconcepts, it need not simply output

"I don't know," on difficult instances. It has maintained enough information to be able

to know which subconcept is causing it to output "I don't know." Thus, in a learning

environment where it is appropriate to do so, our learning procedure can go back and

request more help from the teacher on that particular subconcept.

Chapter 6

A different model of learning

6.1 Introduction

In this chapter we present a new model for the the process of "inductive inference" -the

process of drawing inferences from data. Angluin and Smith [6] provide an excellent

introduction and overview of previous work in the field. Our work is distinguished by

the following features:

* Our inference procedure begins with an a priori probability associated with each

possible theory, and updates these probabilities in a Bayesian manner as evidence

is gathered.

* Our inference procedure has two primitive actions available to it for gathering

evidence, each of which has a cost (in terms of time taken):

1. Using a theory to predict the result of a particular experiment.

2. Running an experiment.

* Our inference procedure attempts to maximize the expected "rate of return", for

example, in terms of the total probability of theories eliminated per unit time.

Osherstraub, Stob, and Weinstein [38] have examined the issue of Bayesianism

within a standard model of inductive infrerence. Their work is rather different from

the approach we take in this chapter, however, because their definition of efficient

computation is effectively any recursive function.

Our approach addresses the following three issues, which we feel are not always well

handled by previous models.

(1) Induction is fundamentally different from deduction. Much previous work

has tried to cast induction into the same mold as deduction: given some data (premises)

to infer the correct theory (conclusion). This approach is philosophically wrong, since

experimental data can only eliminate theories, not prove them. (See Feyerabend [13]

and Kugel [28].) For similar reasons, we feel it is better to study inference procedures

which represent the set of remaining theories (and perhaps their probabilities), rather

than inference procedures which are constrained to return a single answer.

(2) The difficulty of making predictions is overemphasized. Much of the previ-

ous theoretical work in this area has been recursion-theoretic in nature, and the richness

of the results obtained has been in large part due to the richness of the theories allowed;

allowing partial recursive functions as theories makes inference very difficult. The re-

sulting theory probably overemphasizes this recursion-theoretic aspect, compared to

the ordinary practice of science. In this paper, all theories will be total (they predict

a result for every experiment), and we assume that the cost of making such a predic-

tion from a theory is a fixed constant c (time units), independent of the theory or the

proposed experiment. This is obviously an oversimplification, but serves our purposes

well.

(3) Experiments take time, and should be carefully chosen. Much of the

previous work on inductive inference has assumed that the data (i.e., the list of all

possible experimental results) is presented to the learner in some order (cf. [14, 8]).

However, the rate of progress in science clearly depends on which

experiments are run next. (Consider experimental particle physics today.) Part of

doing science well is choosing the right experiments to do.

A good scientist must decide how to allocate his time most effectively-should he

next run some experiment (if so, which one?), or should he work with one of the more

promising theories, computing what it would predict for some experiment (if so, which

theory and which experiment?). These "natural" questions are not particularly well

handled by previous models of the inductive inference problem, but our model will

allow us to answer such questions. Our results also shed some interesting light on

related questions, such as when to run "crucial" experiments that distinguish between

competing hypotheses.

Our model can perhaps be viewed as well as a contribution to the theory of sub-

jective probability [16], which has traditionally had a problem with the fact that sub-

jective probabilities can change as a result of "pure thinking." Various proposals, such

as "evolving probabilities" [17] have been proposed, but these do not deal with the

"thinking" aspect in a clean way.

6.2 Subjective probabilities

Throughout this chapter, when we speak of the probability that our scientist assigns

to some event, we are speaking of the scientist's subjective probability. Our view of

subjective probability has been heavily influenced by I. J. Good's article, "Kinds of

Probability [16]."

The reason for dealing with subjective probability is that "true" or frequentist or

"physical probability" may not be available. Our scientist does not necessarily have

some oracle available to provide him with "true probabilities;" he must take some action

based on his current set of beliefs.

6.3 The Model

6.3.1 Basic Notation and Assumptions

We assume the existence of some scientific domain of interest, defined by an (infinite)

set of possible experiments. Performing the j-th experiment yields a datum Xj; in this

paper we assume for convenience that Xj E {0, 1}. We make the simplistic assumption

that doing an experiment always takes precisely d units of time (independent of which

experiment is performed).

We assume that there are an infinite (but enumerable) set of theories available about

the given domain; we denote them as 0o, o1,.... Each theory is understood to be a

total function from N into {0, 1}; the value ;i(j) = p; is the "prediction" theory yo

makes about the result of experiment j. We assume there exists a correct theory, i,,,

such that (Vj)w,j = Xj. We make the simplistic assumption that computing pij from

i and j always takes precisely c units of time (independent of i and j).

We assume that other operations, such as planning, take no time.

Our scientist begins with two kinds of initial or a priori subjective probabilities:

* The a priori probability that pi;j = 1, for any i and j. We assume that Pr(pj =

0) = Pr(pij = 1) = 1 a priori, for all i and j; the scientist has no reason to expect

his theory to predict one way or the other, until he actually does the computation.

* The a priori probability pi that theory 9i = cp, (i.e. that ci is correct). We

assume that the pi's are computable, that (Vi)pi > 0 (all theories are possible at

first), and that that po > pi Ž

6.3.2 The Scientist Makes Progress

Our scientist begins in a state of total ignorance, and proceeds to enlighten himself by

taking steps consisting of either doing an experiment (determining some Xj) or making

94

a prediction (computing some pij). The scientist may choose which experiments and

predictions he wishes to do or not to do, and can do these in any order (predictions

may precede or follow corresponding experiments, for example).

We need notation to denote the scientist's state of knowledge at time t (after t steps

have been taken).

* Let "I" denote "unknown".

* Let pýj E {0,1, 1} denote the scientist's knowledge of pjj at time t.

* Let xE {0, 1, _} denote the scientist's knowledge of Xj at time t.

If at time t both cp; = ýij and Xý = Xj (i.e. both are known at time t), then there

are two possibilities. Either cpij #: Xj, in which case theory p;i is refuted, or p~ij = Xj, in

which case theory pi is (to some extent) confirmed.

6.3.3 How Long Will Science Take?

Obviously, after a finite number of steps, our scientist will be able to refute only a

finite number of theories, so at no point will he be able claim that he has discovered

the complete "truth".

More realistically, he may ask "How long will it be before I have eliminated all

theories with higher a priori probability than the correct theory?" The answer here

depends on the set of a priori probabilities. A realistic "non-informative prior" attempts

to have pi decrease to zero as slowly as possible; for example we might have pi =

C - (iln(i) Inln(i)...) - 1, where C is a normalizing constant and only the positive terms

in the series of logarithms are included [45].

Note that at least one step is required to eliminate a theory, so that the expected

number of steps required to eliminate all theories with higher a priori probability than

the true one is at least equal to the expected number of such theories, i.e.,

0O

r=0

which is infinite. This result holds for many similar probability distributions which do

not go to zero too quickly.

In fact, for a typical set of initial probabilities, our scientist expects to have an

infinite amount of work to do before the true theory is even considered!

For this reason, among others, we will concentrate on the rate at which the scientist

can refute false theories, rather than on the expected time taken before the scientist

would assert that, on the basis of the evidence available to him, poP is the best available

theory.

6.3.4 How the Scientist Updates His Knowledge

To model the evolution of the scientist's knowledge more carefully, we show how his

subjective probabilities associated with the various theories change as a result of the

steps he has taken, using Bayes' Rule.

What happens to the probabilities maintained by the scientist after step t is per-

formed? Let pý denote the probabilities after step t (here p9 = ps). We consider the

effect of step t on the probability that theory Vi is correct. That is, we look at how

p -1 is updated to become pf.

The process of updating these probabilities according to the result of the last step,

can be performed by executing the following operations in order:

1. For all i,

* Set pý to 0 if Vi has just been refuted.

* Set p to 2 * pt-1 if oi has just been confirmed.

e Otherwise set pý to pf'-

2. Normalize the pf's so that they add up to 1.

The above procedure follows directly from Bayes' Rule, since it is judged a priori

to be equally likely for a prediction to be a 0 or a 1.

We note that if the scientist just sits and "thinks" about an experiment (i.e., he

just computes the predictions of various theories for this experiment), his subjective

probability that Pr(x4 = 0) will evolve, since

Pr(x = 0)= p + p,.
(2 Wt =

It would also not be unreasonable to treat this probability as an interval, since one

knows the upper and lower limits that it could evolve to.

6.3.5 An Example

Consider Table 6.1, which illustrates a portion of a particular scientist's knowledge at

some point in time. (Here unknown values are shown as blanks, and only a portion of

the actual infinite table is shown.)

The second row of the table shows which experiments he has run. Here he knows

only Xo... X4. The second column gives his current probabilities pf.

The second part shows what predictions he has made. Each row of this table

corresponds to one theory. Theories which have been refuted have current probability

zero and are not shown here; it is convenient from here on to assume that Wo is the

most probable theory, W1 is the next most probable theory, and so on. In this example,

the scientist has found out what his most probable theory predicts for experiments 0-5,

and so on.

Running experiment 5 next has the potential of refuting po. (It will either refute

SOo or p3.) Making the prediction •1,5 can not (immediately) refute W1, but would

I_
_ip X

0 0.60
1 0.10
2 0.05
3 0.04 'Pij -
4 0.03
5 0.02
6 0.01

Table 6.1: Partial View of

1T

T

T

1

T
I

I

Scientist's

affect the scientist's estimate of the likelihood

knowledge, the scientist would estimate that

Pr(x5 = 0) = 0.04 + -(1 -

Note, however, that Pr(Wl,S = 0) remains 1/2,

computed.

0

-w

5

Oj

State of Knowledge

that Xs = 0. With the current state of

0.60 - 0.04) = 0.22.

independent of anything else, until it is

6.4 Our Inference Procedures

The approach taken by a scientist will depend upon the relative costs of making pre-

dictions versus doing experiments, his initial probabilities for the theories, and exactly

how he wishes to "optimize" his rate of progress.

98

0 g

-0

0
0
0

0

6

6.4.1 General Assumptions

At each step, the scientist must decide what to do next. Although this choice is, and

always remains, a choice among an infinite number of alternatives, it is reasonable to

restrict this to a finite set by adopting the following rules:

* When running or predicting the result of an experiment which has neither been

previously run nor had predictions made for it, without loss of generality choose

the least-numbered such experiment available.

* When making a prediction for a theory for which no previous predictions have

been made, choose the most probable such theory (in the case of ties, choose the

least-numbered such theory).

6.4.2 Optimization Criteria

The scientist will choose what actions to take according to some optimization criteria.

For example, he may wish to:

1. Maximize the expected total probability currently associated with theories which

are refuted by the action chosen.

2. Minimize the entropy - E0= 0 pý log(p) of his assignment of probabilities to to theo-

ries.

3. Maximize the probability assigned to the theory he currently believes to be the

most likely.

4. Maximize the highest probability assigned to any theory.

5. Minimize the expected total probability assigned to incorrect theories.

More generally, he may wish to maximize his "rate of progress" by dividing his

progress (measured by the change in one of the above criteria) by the time taken by

the action chosen.

In this paper we will discuss all of the above optimization criteria; some very briefly,

and some at length. In the remainder of this section we discuss the general form that all

our inference procedures take, regardless of the particular optimization criterion they

use.

6.4.3 Menus of Options

We propose that the scientist organize his strategy as a "greedy" strategy of the fol-

lowing form:

* He organizes his decision at each step into a finite number of options. Each such

option is a program specifying a sequence of predictions and/or experiments to

run, which terminates with probability 1.

* At a given step, for each available option, the scientist computes the expected

"rate of return" of that option, defined as the expected total gain of that option

(where gain is measured by some optimization criterion) divided by the expected

cost of that option.

* The scientist then chooses to execute an option having highest expected rate of

return, breaking ties arbitrarily.

The reason for introducing the notion of an "option", rather than just concentrating

on the elementary possibilities for a given step, is that certain steps have no expected

rate of return in and of themselves. For example, making a prediction when the cor-

responding experiment has not yet been run has zero expected rate of return, as does

100

running an experiment when no prediction regarding that experiment has yet been

made.

From now on, we let qf denote 1 - pi. We also observe that if our set of probabilities

satisfies po > Pi > ... then it also satisfies poqo Ž plq9 > ... , since po is no further from

than pi is and . P, > P2 . .

6.5 Inference procedure 1: Maximizing the weight

of refuted theories

We begin by studying an inference procedure which tries to refute wrong theories as

quickly as possible. Specifically, the scientist will choose an action which maximizes the

quotient of the expected total probability of theories eliminated by that action, divided

by the cost of that action. The reason for this choice is its simplicity, and the ease

with which the scientist can implement such a strategy. Furthermore, if our a priori

probability happens to be one of the ones for which infinite expected time is required

simply to eliminate all wrong theories (see section 6.3.3.), then this measure probably

makes the most sense.

6.5.1 A Simple Menu of Options

In this subsection and the following subsection, we will spell out a particular menu of

options and analyze our scientist's strategy when he uses this menu and the "maxi-

mizing the weight of refuted theories" optimization criterion. In later sections we will

analyze our scientist's strategy when he uses the same menu but different optimization

criteria.

We first consider the following two options, each of which will always have non-zero

expected rate of return:

101

* Prediction/Experiment Pair: Make a prediction Poj for the least j for which

no predictions yet exist, and then run the corresponding experiment. Here, as

usual, ýpo denotes the theory which is currently most probable. The exepected

"reward" for this action is pt times the probability that Soo will, in fact, be refuted.

Theory cpo will never be refuted if it is the true theory, and will be refuted with

probability 1/2 otherwise; therefore the probability tht Wo will be refuted is qt/2.

Our expected rate of return is thus

t qt

2(c + d)"

We are not compelled to restrict the prediction/experiment pairs to using the

most probable theory, but do so because it is convenient to limit our options, and

also because the expected return from other theories will not be as good.

* Prediction: Compute a prediction cpij, given that the corresponding experiment

determining Xj has already been run. Thus, the expected rate of return for this

prediction is
t t

2c

Here again it is clear that we should choose the least i possible, so as to maximize

the rate of return.

If we stick to options in this simple menu, then the opportunity to make a prediction

only arises after the simple prediction/experiment pair has already been run for that

experiment.

6.5.2 An Expanded Menu of Options

An expanded menu can be obtained by adding the following two options to the simple

menu:

102

* Simple Experiment: Run experiment j, given that at least one prediction has

been made for this experiment. The expected rate of return is

2d '

since the probability that "truth" differs from Wo is qo/2, and (as argued below),

in this case we must have only the prediction Poj.

* Crucial Two- Way Experiment: Determine the least j such that the two most

probable theories make differing predictions for Xj. Then run experiment j. To

calculate the expected reward, we must consider three cases. (1) If po is the

true theory, then we will refute P,, for a reward of pt. The probability that

Po is the true theory is pot, so this case contributes ptp4 to the total expected

reward. (2) Similarly, the case where W1 is the true theory contributes p pt to the

total final reward. (3) If neither Po nor Wp is the true theory, then it is equally

likely that po or t1 will be refuted. Since this case has probability 1 - p, - pi, its

contribution to the expected reward is (1 -p -pt)(pt + pt)/2. Thus the expected

reward is

(1 - p - (p + pD) q + pIqt + 2pp
2 pooPq+p2 + 2 p02P

2pp +)2

2

Note that the expected cost of finding a crucial experiment is exactly 4c, since if

we pick a j and compute Poj and lj, we have a 1/2 chance of finding j to be

crucial.' The expected rate of return is

p + p - (p _ pt) 2
2(4c + d) (6.1)

'Note also, that there is no special reason to restrict ourselves to crucial two-way experiments. We
could also run crucial n-way experiments, where we find the least j such that the n most probable
theories split as evenly as possible (in terms of probability weight). Now the expected cost of finding
such a j increases from 4c to (2n + 2n-1 - 2)c.

103

We note that in the expanded menu, the only way an opportunity can arise to

run a simple experiment is by having the search for a crucial experiment generate

predictions for the first two theories, without running the corresponding experiment

since the predictions were identical. This is the only way we can obtain a situation

where predictions have been made for experiments that haven't been run. Furthermore,

additional predictions won't be made for this experiment until after this experiment

has been run. Since the crucial experiment will eliminate one of the top two theories,

we will be left in a situation where (after renumbering of theories as usual) there is a

j for which we know ýpoj but have not yet run experiment j.

We claim that, using either the simple or expanded menu, the relative order of two

theories will not change, except when a theory is refuted, if an optimal greedy strategy

is used. This follows since it is always preferable to work with the more probable

theories, given a particular option, and this work will tend to enhance the probability

of that theory if it is not refuted.

Having given our menu of options, we can now make one simple definition. When

we speak of checking or testing Vpi, we are talking about either doing a prediction/

experiment pair involving ip or doing simple experiment j for some j for which pji has

already made a prediction. In short, testing cpj means to take some action that could

potentially refute Vpi.

6.5.3 Behavior of this Inference Procedure

For the Simple Menu

For the simple menu, clearly we begin with a prediction/experiment pair. After that,

the scientist will oscillate between further testing of his best theory (using prediction/

experiment pairs), and testing of his other theories (using predictions).

The ratio c/(c + d) will affect the relative amount of time spent on prediction/

104

experiment pairs. We will typically see all theories down to some probability threshold

(depending on c, d, and po) fully checked out against existing experimental data, before

proceeding with the next prediction/experiment pair.

For the Expanded Menu

If it is more expensive to perform an experiment than to compute a theory's prediction,

then our scientist will at least want to consider whether he should get his experimental

data from crucial experiments rather than from prediction/experiment pairs.

Let's consider whether at the beginning of time, the scientist is better off running

a prediction/experiment pair, or running a crucial two-way experiment. The crucial

experiment will have a higher expected rate of return if

Po + - (Po - p) Poo (6.2)
2(4c + d) 2(c + d)

or

d 3poqo

c p (2po + qi)

It is sufficient for equation 6.2 to hold if

c+ d poqo
3c p1q1

We see that for any ratio d/c, it is possible to have a crucial experiment be advantageous

over a prediction/experiment pair; consider what happens when Po = P, = 1/2.

No matter how cheap experiments get, relative to the cost of making predictions, it is

possible to find a probability distribution where it is advantageous to find an experiment

which will be crucial, before running any experiments.

Thus in general, it may pay to use the expanded menu, for any values of d and c.

105

6.6 Inference procedure 2: A minimum entropy

approach

The entropy of a probability distribution P,
oo

H(P) = --p; log2 pi (6.3)
i=1

is considered to be a good measure of the information contained in that probability

distribution. Maximizing entropy corresponds to maximizing uncertainty; minimizing

entropy corresponds to minimizing uncertainty. Thus a reasonable optimization crite-

rion for our scientist would be minimizing the entropy of the a posteriori probability

distribution.

Unfortunately, for some probability distributions, the entropy will be infinite. Con-

sider, for instance, the previously mentioned distribution due to Rissanen [45],

pi = C - (il In(i) In In(i)...) - 1 , (6.4)

where C is a normalizing constant and only the positive terms in the series of logarithms

are included. Wyner [56] shows that the entropy series, equation (6.3), converges only if

the series t= pi log i is convergent, but this series is clearly diverges for the distribution

given in equation (6.4).

However, any particular experiment or prediction made by our scientist only causes

him to alter a finite number of his a posteriori probabilities for theories, excluding

the effect of renormalizing. It happens, as we shall see below, that even with renor-

malization, the expected change in entropy for any action from the expanded menu is

finite.

The above discussion leads us to a precise description of the optimization criterion

for our second inference procedure. The scientist chooses an action which maximizes

the quotient of the expected decrease in the entropy of the probability distribution

resulting from that action, divided by the cost of that action.

106

6.6.1 Behavior of this Inference Procedure

We need to calculate the expected change in entropy for each of our action in our

(expanded) menu. To begin with, we calculate the change in entropy caused by refuting

•O. (The case for Wi is similar, but the notation is simpler for i = 0.) Let Pto be the

initial probability distribution , and let A(H(P)) denote the change in entropy that

occurs when po is refuted. Then

A(H(P)) = 1 -Plog + pilogpi

- (l -po)log (1 - po) - Pilogp + pilogp

1 - Po i= i=O
log0 i- P0

= log(1 -po) + log Po H(Po). (6.5)
S-Po 1-Po

Now we calculate the change in entropy that occurs if po is instead partially con-

firmed. In the case we have

2po l / 00

1 1 +Po +o 1 +Po i=o

S2po log + po logPo Plog +P P i log
=log(l+ + Po

= o + (2+ logpo+H(Pto)). (6.6)

Now we are ready to compute the expected change in entropy for each item in our

expanded menu.

* For computing the prediction p;ij (assuming that Xj is already known), we get

E [A(H(P))] = -p, + .5(1 - pi) log(1 - pi) + .5(1 + p,) log(1 + pi). (6.7)

Equation (6.7) comes from taking (1 - pi)/2 (the probability that pi is refuted)

times the quantity specified by equation (6.5) plus (1 +pi)/ 2 (the probability that

ýjo is confirmed) times the quantity specified by equation (6.6).

107

* For running a two way experiment between po and i we get

E [A(H(P))] = -po-pl+.5(1+po-pl) log(l+po-pl)+.5(1-po+pl) log(1 -po+pi).

(6.8)

* In fact, in general, for running Xj where the total probability weight of theories

which predict that Xj will be zero is ro and the total probability weight of theories

which predict that Xj will be one is rl we get

E [A(H(P))] = -ro-ri+.5(1+ro-rl)log(1+ro-ri)+.5(1-ro+rl) log(1-ro+rx).

(6.9)

Consider the probability distribution, R, that has only two outcomes, one with

probability ro + .5(1 - ro - rl), the other with probability ri + .5(1 - ro - ri). We can

rewrite equation (6.9) in terms of the entropy of R,

E [A(H(P))] = -ro - ri + H(R). (6.10)

Equations (6.7) and (6.8) can be rewritten in a similar manner (since really they're just

special cases of equation (6.9)).

In fact, the calculations for this entropy driven inference procedure and the previous,

"Kill wrong theories" driven procedure yield very similar results. Equation (6.10) and

equation (6.1) could both be written as

PROGRESS = k(ro + ri - penalty(iro - rl). (6.11)

(The difference in signs between equation (6.10) and equation (6.11) arises because in

equation (6.10) we're trying to minimize entropy, so our progress is negative, and our

penalty is positive.)

Let 6 = Iro - r . For the entropy approach, k = 1 in equation (6.11), and

penalty(b) = H(.5+ 6/2,.5- /2). (In terms of ro and rl that probability distribution is

108

ro + u/2, rl + u/2, where u = 1 - ro - rl is the undecided probability weight-the total

probability weight of those theories i such that pi(j) = 1.) For the kill wrong theories

approach of the previous section, k = 1/2 in equation (6.11), and penalty(S) = 62.

As one might expect given this strong similarity between the two optimization

criteria, the inference procedures behave in a roughly similar manner.

6.7 Inference procedure 3: Making the best the-

ory good

Our scientist might decide that he would like to at all times have a theory that's "pretty

good." There are several approaches he might take.

In the extreme, he might simply decide that his goal would be to always increase

the a posteriori probability assigned to the current best theory. Such a cynical strategy

turns out to be impossible. No actions lead to an expected increase in the probability

assigned to the best theory. If we check the best theory with any kind of action, then

with probability po+. 5 (1 -po) it is confirmed, and its probability goes up to 2po/(1 +po).

However, with probability 1 - po it is refuted and its probability goes to zero. Thus its

expected probability after any action is [(po + 1)/2] 2 po/(l +po) = po0. If we check other

theories, they may be either refuted, which would increase the probability assigned to

G0o, or confirmed, which would decrease the probability assigned to W0, and it again

works out that the expected value of the a posteriori probability weight assigned to po

is po.

Since our scientist cannot steadily increase the probability assigned to the best

theory, he might settle for a strategy which always keeps the current best theory best.

To accomplish this goal, the scientist should never test po against any theory. He should

simply test the other theories, making sure to stop testing Vi as soon as pi > .5po

109

(otherwise 'pi might replace ýpo as best). This procedure is obviously uninteresting.

There is, however, at least one interesting way for the scientist to always have a

"pretty good" best theory. The scientist chooses an action to maximize the quotient of

the expected value of the probability weight assigned to the best theory not yet refuted

after that action, and the cost of that action.

6.7.1 Behavior of this Inference Procedure

The first thing we do is calculate the expected value of the weight assigned to the best

theory for each action from the expanded menu.

* If we test 'po (with any kind of action), then with probability Po +..5(1 - Po)

it will be confirmed, and the probability weight for the best theory will become

2po/(1 + po). With probability .5(1 - Po), Po will be refuted, and the probability

weight for the best theory will become pl/(1 - Po). The expected value of the

probability weight for the best theory is therefore Po + p1/ 2 .

* If pi < .5po (so if even we test and confirm Wi it will still have a lower a posteriori

probability weight than 'po), then testing Wi does not lead to an increase in the

expected value of the probability weight of the best theory.

* If pi > .5Po, and we test cp, then the expected value of the probability weight of

the best theory after the test is pi + po/ 2 .

Note however, that this situation is of no practical importance. If Xj is known

and both poj and cpij are unknown, then it will be more profitable to compute

'Poj than to compute (pi. Consider now the case where there is some j such that

Xj = W'o but Wij = I. Whichever theory is now numbered zero began with an

initial probability weight greater than or equal to the initial probability weight of

110

of the theory now numbered i. Moreover, since at time t apo has been confirmed

more than pj, it must be that pý > 2pt .

* If we run a crucial experiment for the two best theories, then the expected value

of the probability weight of the best theory is Po + pl. 2

Having listed the payoffs for each action, we can now give the payoff/cost ratios for

the actions we might take:

* A simple pair with the best theory: (po + .5pl)/(c + d).

* Prediction for coj if Xj known: (po + .5pl)/d

* Simple experiment Xj where 0oj is known: (po + .5pl)/d.

* Crucial two way experiment: (po + pl)/(4c + d).

* We might consider running a two way experiment when we have some leftover

predictions (say from an earlier two way experiment) for one of the two theories.

If we have k such predictions, then the expected cost decreases from d + 4c to

d + (3 - EZ; 1 2-i)c.

All our scientist needs to do is pick the maximum reward/cost action from the above

list, but we'll make a few qualitative observations here: If there is a j for which Xj is

known but o0j is not, then it's always best to compute Woj. It's better to do a crucial

experiment instead of a simple pair if d/c > 6po + 2pl; otherwise it is better to do the

simple pair.

2In this case there we gain nothing by running a crucial experiment for the best n theories for
n > 2.

111

6.8 An optimality result

There are a number of ways one might measure the efficiency of our inference proce-

dures. Here we -consider the question, "How efficiently do these procedures eliminate

wrong theories?" This measure seems especially appropriate since all of these inference

procedures have the qualitative behavior that early on they are busy refuting lots of

wrong theories. It turns out that all our procedures do this refuting of wrong theories

well; we will show that all of our procedures perform within a constant factor of the

optimum.

We begin by calculating the best possible refutation rate.

6.8.1 The optimal refutation rate

Assume that the right theory has index at least r. Define f(c, d, r) to be the expected

cost of refuting 0o, 01, ,r-1.

Theorem: For any inference procedure, f(c, d, r) > 2cr + dO (log r).

Proof: To refute ri we must keep on computing values of ýij until we get one where

Vij = 0 and Xj = 1 or vice versa. Given that pi is not the right theory, we expect we

will on average have to try two pij until we get one that is refuted by X. Hence our

expected computation cost for eliminating r theories must be at least 2cr.

Now for the cost of doing experiments. Since for wrong theories the pij are all

independent, we might as well reuse the same experimental Xj's in refuting each pi.

However, we have r such ýpj's to refute. What is the expected maximum number of

agreements between any p; and X over all r pi's? Equivalently, if we play a game where

we toss a coin until we've seen a total of r heads, what is the expected length of the

longest consecutive run of tails? We will show that the answer is 0 (log r).

More formally, let X, be the number of experiments required to refute (wrong) cpj;

112

it is easy to check that Pr [Xi = j] = 2- j for j = 1,2, . Let X = maxr 1= Xi. We

want to show E [X] = e (log r).

E [X] = kPr[X =k]
k=1

-= k(Pr[X > k] -Pr[X k+ 11)
k=1

E= Pr[3i :Xi_ >k]
k=1

Llog rJ 00

< E Pr[3i : Xi ! k] + E r2-"k '
k--1 k= [logrJ

< logr+1. (6.12)

In the other direction we have

E [X]
00oo

= EPr[3i :X > I k]
k=1
00

= E 1 - (1 -2-k+')r
k=1

L.5 logrJ
> E 1 - (1 - 2/V)r

k=1

_ (1 - (1 - 2/ Vr)') 2 log r

S(1 - e-2t)1 logr.2 (6.13)

6.8.2 How our procedures compare to the optimum

The three inference procedures we discussed in the preceding three sections all perform

within a constant factor of the optimum in refuting wrong theories.

None of them ever actually does an experiment when there are known experimental

values against which the best theory has not yet been tested. Thus, until the right

theory has become po, we never do any more experiments than the optimum theory

refutation strategy.

113

We do sometimes perform more computations than the optimum theory refutation

strategy. In particular, we sometimes perform "wasted" computations as part of a

crucial two way experiment. In such an experiment we might compute Vo0j and ýolj for

some j and find them to be equal. By the definition of a crucial experiment, we will

refute one of those two theories before ever doing experiment Xj; hence one of those

computations was "wasted." However, we only perform crucial experiments when we're

going to do an experiment, and we only do 0 (log r) experiments, so we only miss the

optimum of 2cr by cO (log r).

6.9 Conclusions for Chapter 6

We have introduced a new model for the process of inductive inference, which

1. is relatively simple, yet

2. captures a number of the qualitative characteristics of "real" science,

3. provides a crisp model for evolving or dynamic subjective probabilities, and

4. demonstrates that crucial experiments are of interest for any relative cost of

experiments and making predictions.

114

Chapter 7

Final remarks

This thesis has primarily explored two formal models of learning-the new model intro-

duced in this chapter, and the pac learning model in earlier chapters. The hope is that

the presentation of two such different models in the same place highlights the features

that any such model must have, and illustrates the contributions that computational

learning theory can make to the study of learning in general.

Good models will on the should capture some qualitative features of real world

problems, and yet pose problems simple enough that one can make progress in finding

provably good algorithms.

115

Bibliography

[1] Naoki Abe. Polynomial learnability of semilinear sets (extended abstract). In
Second Workshop on Computational Learning Theory, Santa Cruz, Cal. 1989.

[2] Jonathan Amsterdam. The Valiant Learning Model: Extensions and Assessment.
Master's thesis, MIT Department of Electrical Engineering and Computer Science,
January 1988.

[3] Dana Angluin. Inference of reversible languages. Journal of the A CM, 29(3):741-
765, July 1982.

[4] Dana Angluin, William I. Gasarch, and Carl H. Smith. Training Sequences. Tech-
nical Report UMIACS-TR-87-37, University of Maryland Institute for Advanced
Computer Studies, August 1987.

[5] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,
2(4):343-370, 1988.

[6] Dana Angluin and Carl H. Smith. Inductive inference: theory and methods. Com-
puting Surveys, 15(3):237-269, September 1983.

[7] J. M. Barzdin and R. V. Frievald. On the prediction of general recursive functions.
Soviet Mathematics Doklady, 13:1224-1228, 1972.

[8] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive in-
ference. Information and Control, 28(2):125-155, June 1975.

[9] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Classifying learnable geometric concepts with the Vapnik-Chervonenkis dimen-
sion. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, pages 273-282, Berkeley, California, May 1986.

[10] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Learnability and the Vapnik-Chervonenkis Dimension. Technical Report USCS-

116

CRL-87-20, U.C. Santa Cruz Computer Science Laboratory, November 1987. To
appear in J. A CM.

[11] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Occam's razor. Information Processing Letters, 24:377-380, April 1987.

[12] H. S. M. Coxeter and W. O. J. Moser. Generators and Relations for Discrete
Groups. Springer-Verlag, New York, third edition, 1972.

[13] P. K. Feyerabend. Philosophical Papers: Realism, Rationalism, & Scientific
Method. Volume 1, Cambridge University Press, 1981.

[14] E. Mark Gold. Language identification in the limit. Information and Control,
10:447-474, 1967.

[15] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792-807, October 1986.

[16] I. J. Good. Kinds of probability. Science, 129(3347):443-447, February 1959.

[17] I. J. Good. The probabilistic explication of information, evidence, surprise, causal-
ity, explanation, and utility. In V. P. Godame and D. A. Sprott, editors, Founda-
tions of Statistical Inference, pages 108-141, Holt, Reinhart, and Winston, 1971.

[18] Israel Grossman and Wilhelm Magnus. Groups and Their Graphs. Volume 14
of New Mathematical Library, Mathematical Association of America, Washington,
1964.

[19] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 4th edition, 1960.

[20] David Haussler. Bias, version spaces and Valiant's learning framework. In Proceed-
ings of the Fourth International Workshop on Machine Learning, pages 324-336,
University of California, Irvine, June 1987.

[21] David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmuth.
Equivalence of models for polynomial learnability. In First Workshop on Com-
putational Learning Theory, pages 42-55, Morgan-Kaufmann, August 1988.

[22] David Haussler, Nick Littlestone, and Manfred K. Warmuth. Predicting {0, 1}-
functions on randomly drawn points. In 29th Annual Symposium on Foundations
of Computer Science, pages 100-109, IEEE, White Plains, NY, 1988. Tech. Report,
U. C. Santa Cruz, to appear (longer version).

117

[23] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13-30, March 1963.

[24] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, Mass. 1979.

[25] Michael Kearns and Ming Li. Learning in the presence of malicious errors. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
Chicago, Illinois, May 1988.

[26] Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. Recent results on
boolean concept learning. In Proceedings of the Fourth International Workshop on
Machine Learning, pages 337-352, University of California, Irvine, June 1987.

[27] Michael Kearns and Leslie G. Valiant. Learning Boolean Formulae or Finite Au-
tomata is as Hard as Factoring. Technical Report TR 14-88, Harvard University
Aiken Computation Laboratory, 1988.

[28] Peter Kugel. Induction, pure and simple. Information and Control, 35:276-336,
1977.

[29] John Laird, Paul Rosenbloom, and Allen Newell. Chunking in Soar: the anatomy
of a general learning mechanism. Machine Learning, 1(1):11-46, 1986.

[30] John Laird, Paul Rosenbloom, and Allen Newell. Towards chunking as a general
learning mechanism. In Proceedings AAAI-84, pages 188-192, August 1984.

[31] Philip D. Laird. Learning from Good and Bad Data. Kluwer international series
in engineering and computer science, Kluwer Academic Publishers, Boston, 1988.

[32] A. K. Lenstra, H. W. Lenstra, and L. Lovisz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515-534, 1982.

[33] Nathan Linial, Yishay Mansour, and Ronald L. Rivest. Results on learnability and
the Vapnik-Chervonenkis dimension. In Proceedings of the Twenth-Ninth Annual
Symposium on Foundations of Computer Science, pages 120-129, October 1988.

[34] Nick Littlestone. Learning when irrelevant attributes abound: a new linear-
threshold algorithm. Machine Learning, 2:285-318, 1988.

[35] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial Group
Theory: Presentation of Groups in Terms of Generators and Relations. John
Wiley & Sons, New York, 1966.

118

[36] G. Miller. The magic number seven, plus or minus two: some limits on our capacity
for processing information. Psychology Review, 63:81-97, 1956.

[37] Thomas M. Mitchell. Version spaces: a candidate elimination approach to rule
learning. In Proceedings IJCAI-77, pages 305-310, International Joint Committee
for Artificial Intelligence, Cambridge, Mass., August 1977.

[38] Daniel N. Osherson, Michael Stob, and Scott Weinstein. Mathematical learners
pay a price for Bayesianism. 1986. (MIT Dept. of Brain and Cognitive Science).

[39] Daniel N. Osherson, Michael Stob, and Scott Weinstein. Systems that Learn:
An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT
Press, 1986.

[40] Judea Pearl. On the connection between the complexity and credibility of inferred
models. Journal of General Systems, 4:255-264, 1978.

[41] Leonard Pitt and Leslie G. Valiant. Computational Limitations on Learning from
Examples. Technical Report, Harvard University Aiken Computation Laboratory,
July 1986.

[42] Leonard Pitt and Manfred K. Warmuth. The minimum DFA consistency problem
cannot be approximated within any polynomial. In Proceedings of the Twenty-
First Annual ACM Symposium on Theory of Computing, Seattle, Washington,
May 1989.

[43] David Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

[44] J. Ross Quinlan. The effect of noise on concept learning. In Machine Learning, An
Artificial Intelligence Approach (Volume II), chapter 6, pages 149-166, Morgan
Kaufmann, 1986.

[45] Jorma Rissanen. A universal prior for integers and estimation by minimum de-
scription length. The Annals of Statistics, 11(2):416-431, 1983.

[46] Ronald L. Rivest. Personal communication.

[47] Ronald L. Rivest and Robert Sloan. A new model for inductive inference. In
Moshe Vardi, editor, Proceedings of the Second Conference on Theoretical Aspects
of Reasoning about Knowledge, pages 13-27, Morgan Kaufmann, March 1988.

[48] Robert E. Schapire. Diversity-Based Inference of Finite Automata. Master's thesis,
MIT Lab. for Computer Science, May 1988. Technical Report MIT/LCS/TR-413.

119

[49] George Shackelford and Dennis Volper. Learning k-DNF with noise in the at-
tributes. In First Workshop on Computatinal Learning Theory, pages 97-103,
Morgan Kaufmann, Cambridge, Mass. August 1988.

[50] Haim Shvaytser. Linear manifolds are learnable from positive examples. April
1988. Unpublished manuscript.

[51] Leslie G. Valiant. Learning disjunctions of conjunctions. In Proceedings IJCAI-85,
pages 560-566, International Joint Committee for Artificial Intelligence, Morgan
Kaufmann, August 1985.

[52] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

[53] Kurt VanLehn. Learning one subprocedure per lesson. Artificial Intelligence,
31(1):1-40, January 1987.

[54] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-
Verlag, New York, 1982.

[55] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its applications,
XVI(2):264-280, 1971.

[56] A. D. Wyner. An upper bound on the entropy series. Information and Control,
20:176-181, 1972.

[57] Andrew C. Yao. Theory and applications of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science, pages 80-91, 1982.

120

