2 research outputs found

    Learning Chordal Markov Networks via Branch and Bound

    Get PDF
    We present a new algorithmic approach for the task of finding a chordal Markov network structure that maximizes a given scoring function. The algorithm is based on branch and bound and integrates dynamic programming for both domain pruning and for obtaining strong bounds for search-space pruning. Empirically, we show that the approach dominates in terms of running times a recent integer programming approach (and thereby also a recent constraint optimization approach) for the problem. Furthermore, our algorithm scales at times further with respect to the number of variables than a state-of-the-art dynamic programming algorithm for the problem, with the potential of reaching 20 variables and at the same time circumventing the tight exponential lower bounds on memory consumption of the pure dynamic programming approach.Peer reviewe

    Benchpress: a scalable and platform-independent workflow for benchmarking structure learning algorithms for graphical models

    Full text link
    Describing the relationship between the variables in a study domain and modelling the data generating mechanism is a fundamental problem in many empirical sciences. Probabilistic graphical models are one common approach to tackle the problem. Learning the graphical structure is computationally challenging and a fervent area of current research with a plethora of algorithms being developed. To facilitate the benchmarking of different methods, we present a novel automated workflow, called benchpress for producing scalable, reproducible, and platform-independent benchmarks of structure learning algorithms for probabilistic graphical models. Benchpress is interfaced via a simple JSON-file, which makes it accessible for all users, while the code is designed in a fully modular fashion to enable researchers to contribute additional methodologies. Benchpress currently provides an interface to a large number of state-of-the-art algorithms from libraries such as BiDAG, bnlearn, GOBNILP, pcalg, r.blip, scikit-learn, TETRAD, and trilearn as well as a variety of methods for data generating models and performance evaluation. Alongside user-defined models and randomly generated datasets, the software tool also includes a number of standard datasets and graphical models from the literature, which may be included in a benchmarking workflow. We demonstrate the applicability of this workflow for learning Bayesian networks in four typical data scenarios. The source code and documentation is publicly available from http://github.com/felixleopoldo/benchpress.Comment: 30 pages, 1 figur
    corecore