17 research outputs found

    Pattern Recognition for Conditionally Independent Data

    Full text link
    In this work we consider the task of relaxing the i.i.d assumption in pattern recognition (or classification), aiming to make existing learning algorithms applicable to a wider range of tasks. Pattern recognition is guessing a discrete label of some object based on a set of given examples (pairs of objects and labels). We consider the case of deterministically defined labels. Traditionally, this task is studied under the assumption that examples are independent and identically distributed. However, it turns out that many results of pattern recognition theory carry over a weaker assumption. Namely, under the assumption of conditional independence and identical distribution of objects, while the only assumption on the distribution of labels is that the rate of occurrence of each label should be above some positive threshold. We find a broad class of learning algorithms for which estimations of the probability of a classification error achieved under the classical i.i.d. assumption can be generalised to the similar estimates for the case of conditionally i.i.d. examples.Comment: parts of results published at ALT'04 and ICML'0

    Learning with a Drifting Target Concept

    Full text link
    We study the problem of learning in the presence of a drifting target concept. Specifically, we provide bounds on the error rate at a given time, given a learner with access to a history of independent samples labeled according to a target concept that can change on each round. One of our main contributions is a refinement of the best previous results for polynomial-time algorithms for the space of linear separators under a uniform distribution. We also provide general results for an algorithm capable of adapting to a variable rate of drift of the target concept. Some of the results also describe an active learning variant of this setting, and provide bounds on the number of queries for the labels of points in the sequence sufficient to obtain the stated bounds on the error rates

    Machine Learning Methods for Attack Detection in the Smart Grid

    Get PDF
    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semi-supervised) are employed with decision and feature level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than the attack detection algorithms which employ state vector estimation methods in the proposed attack detection framework.Comment: 14 pages, 11 Figure
    corecore