7 research outputs found

    Advances in Learning Bayesian Networks of Bounded Treewidth

    Full text link
    This work presents novel algorithms for learning Bayesian network structures with bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed-integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in uniformly sampling kk-trees (maximal graphs of treewidth kk), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that kk-tree. Some properties of these methods are discussed and proven. The approaches are empirically compared to each other and to a state-of-the-art method for learning bounded treewidth structures on a collection of public data sets with up to 100 variables. The experiments show that our exact algorithm outperforms the state of the art, and that the approximate approach is fairly accurate.Comment: 23 pages, 2 figures, 3 table

    Learning Bayesian Networks with the Saiyan algorithm

    Get PDF
    Some structure learning algorithms have proven to be effective in reconstructing hypothetical Bayesian Network (BN) graphs from synthetic data. However, in their mission to maximise a scoring function, many become conservative and minimise edges discovered. While simplicity is desired, the output is often a graph that consists of multiple independent graphical fragments or variables that do not enable full propagation of evidence. While this is not a problem in theory, it can be a problem in practice. This paper presents a novel unconventional heuristic local-search structure learning algorithm, called Saiyan, which returns a directed acyclic graph that enables full propagation of evidence. Forcing the algorithm to connect all data variables and to direct all of the edges discovered implies that the additional forced arcs are not expected to be correct at the rate of those identified unrestrictedly, and this evidently has a negative impact on the evaluation score of the discovered graph. Still, based on both synthetic and real-world experiments, the Saiyan algorithm demonstrates competitive performance relative to other state-of-the-art constraint-based, score-based, and hybrid structure learning algorithms

    Efficient learning of Bayesian networks with bounded tree-width

    Get PDF
    Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods [24,29] tackle the problem by using k-trees to learn the optimal Bayesian network with tree-width up to k. Finding the best k-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative k-trees by introducing an informative score function to characterize the quality of a k-tree. To further improve the quality of the k-trees, we propose a probabilistic hill climbing approach that locally refines the sampled k-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most k. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods

    Integer linear programming for the Bayesian network structure learning problem.

    Get PDF
    Bayesian networks are a commonly used method of representing conditional probability relationships between a set of variables in the form of a directed acyclic graph (DAG). Determination of the DAG which best explains observed data is an NP-hard problem. This problem can be stated as a constrained optimisation problem using Integer Linear Programming (ILP). This paper explores how the performance of ILP-based Bayesian network learning can be improved through ILP techniques and in particular through the addition of non-essential, implied constraints. There are exponentially many such constraints that can be added to the problem. This paper explores how these constraints may best be generated and added as needed. The results show that using these constraints in the best discovered configuration can lead to a significant improvement in performance and show significant improvement in speed using a state-of-the-art Bayesian network structure learner

    D'ya like DAGs? A Survey on Structure Learning and Causal Discovery

    Full text link
    Causal reasoning is a crucial part of science and human intelligence. In order to discover causal relationships from data, we need structure discovery methods. We provide a review of background theory and a survey of methods for structure discovery. We primarily focus on modern, continuous optimization methods, and provide reference to further resources such as benchmark datasets and software packages. Finally, we discuss the assumptive leap required to take us from structure to causality.Comment: 35 page
    corecore