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Abstract

Learning Bayesian networks with bounded tree-width has attracted much
attention recently, because low tree-width allows exact inference to be per-
formed efficiently. Some existing methods [24, 29] tackle the problem by
using k-trees to learn the optimal Bayesian network with tree-width up to
k. Finding the best k-tree, however, is computationally intractable. In this
paper, we propose a sampling method to efficiently find representative k-
trees by introducing an informative score function to characterize the quality
of a k-tree. To further improve the quality of the k-trees, we propose a
probabilistic hill climbing approach that locally refines the sampled k-trees.
The proposed algorithm can efficiently learn a quality Bayesian network with
tree-width at most k. Experimental results demonstrate that our approach
is more computationally efficient than the exact methods with comparable
accuracy, and outperforms most existing approximate methods.
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1. Introduction

Bayesian networks (BNs) use a directed acyclic graph (DAG) to com-
pactly represent the joint probability distribution for multiple variables. The
DAG encodes conditional independencies which reduces the number of pa-
rameters. Learning BNs from data has been widely studied for decades. In
this paper we present our approach of score-based BN structure learning with
some special constraint.

The inference problems in BNs, such as querying the probability of some
value of a variable conditioned on a configuration of some other variables
(belief updating), or finding a configuration of the variables that maximizes
the joint probability (MAP inference), are NP-hard to compute exactly [13]
or even approximately [15, 30]. Existing exact algorithms have worst-case
time complexity exponential in the tree-width of the graph [16, 20, 23, 26].
Therefore, for any application that requires fast inferences, it is important
to learn networks with small tree-width. Learning a BN with bounded tree-
width has received growing attention recently. Besides guaranteed inference
complexity, by imposing a hard constraint on the tree-width of the structure,
selecting an over-complicated structure is prevented, thus the chance of over-
fitting is reduced. Some empirical results [18] demonstrate that bounding the
tree-width of a BN achieves better generalization performance.

Several algorithms have been proposed to learn BNs with bounded tree-
width. Elidan and Gould [19] designed an approximate algorithm by combin-
ing several heuristics to compute the tree-width and to learn the structure
of BNs. Korhonen and Parviainen [24] proposed a dynamic programming
based algorithm for learning n-node BNs of tree-width at most k (which we
denote as K&P algorithm in this paper). Their algorithm guarantees to find
the optimal structure over n nodes maximizing a given score function subject
to the tree-width constraint with complexity O(3nnk+O(1)). In practice, it is
quite slow for networks with more than 15 nodes, or tree-width more than 3.
Parviainen et al. [31] developed an integer programming approach to solve
the problem. It iteratively creates a cutting plane on the current solution to
avoid exponentially many constraints. Berg et al. [6] transferred the problem
into a weighted maximum satisfiability problem and solved it by weighted
MAX-SAT solvers. However, all the exact algorithms work only with small
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networks and small tree-widths. We introduced an exact algorithm based
on mixed integer linear programming (MILP) [29] and approximate methods
based on k-tree sampling [29, 27] to address this problem. In our latest work
[28], we further improved the sampling method using the A* search algo-
rithm. Methods have also been proposed to tackle the problem of learning
undirected models with bounded tree-width [2, 10, 35].

In this work, we present a novel method of score-based BN structure learn-
ing with bounded tree-width. We design an approximate approach based on
sampling k-trees, which are the maximal graphs of tree-width k. The sam-
pling method is based on a fast bijection between k-trees and Dandelion
codes [9]. We design a sampling scheme, called distance preferable sampling
(DPS), in order to effectively cover the space of k-trees using limited samples,
in which we give a larger probability for a sample in the unexplored area of
the space, based on the existing samples. Smart rules to explore the sam-
ple space are essential, because we can only compute a few best structures
respecting sampled k-trees in a reasonable amount of time. To evaluate the
sampled k-trees, we design an informative Score (I-score) function to mea-
sure the quality of k-trees based on independence tests and BDeu scores.
Different from the method proposed in [29], this work focuses on identifying
high quality k-trees, instead of uniformly sampling. For each sampled k-tree
(represented by a Dandelion code), we first refine it by employing a hill climb-
ing algorithm (HC) to locally identify a code with the largest I-score. One
shortcoming of the HC method is that it ends up with a local optimum. To
alleviate this issue, we introduce a probabilistic version of the hill climbing
method (PHC) to obtain a k-tree of high quality. Once a k-tree is found,
both exact [24] and approximate [29] methods are implemented to find the
BN as a subgraph of the k-tree.

This paper is structured as follows. We first introduce some definitions
and notations for BNs and tree-width in Section 2. Then we discuss the
proposed sampling method for learning BNs with bounded tree-width in
Section 3. Experimental results are given in Section 4. Finally we conclude
the paper in Section 5.

2. Preliminaries

2.1. Learning Bayesian Networks

A Bayesian network uses a directed acyclic graph (DAG) to represent a
set of random variables X = {Xi}ni=1 and their conditional (in)dependencies.
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Arcs of the DAG encode parent-child relations. Denote Xpai as the parent set
of variable Xi. Conditional probability tables p(xi|xpai) are given accordingly,
where xi and xpai are instantiations of Xi and Xpai . We consider categorical
variables in this work.

Given a fixed structure G and a complete data set D = {x(j)}Mj=1 of points
assumed sampled independently from a distribution P on X , the numerical
parameters θ of a BN with structure G can be efficiently obtained by max-
imum likelihood estimation (MLE) by finding θ that maximizes the data
log-likelihood according to the model:

L(G, θ) =
M∑
j=1

logPG,θ(x
(j)) . (1)

The structure learning task of BNs is to identify the “best” DAG from data.
In this paper we consider the score-based BN structure learning problem, in
which a score s(G) is assigned to each DAG G. The commonly used score
functions (such as BIC [33] and BDeu [8, 14, 22]) are decomposable, i.e., the
overall score can be written as the sum of local score functions,

s(G) =
n∑
i=1

si(Xpai) . (2)

For each variable, its score is only related to its parent set. We assume that
local scores have been computed in advance and can be retrieved in constant
time.

Most score functions penalize model complexity, because increasing the
number of parents of a variable never decreases data likelihood, which leads
to overfitting and poor generalization. A typical example is the BIC score,

si(xpai) = Li,pai − ti(xpai) · w , (3)

where the first term is log-likelihood and the second term is a penalty term
to avoid overfitting. ti(pai) is the number of free parameters with respect to
the configuration of {xi, xpai}, and w = 1

2
logM , where M is the number of

data samples. Such penalty term generally leads to structures of small in-
degree, but even small in-degree graphs can have large tree-width, which is a
problem for subsequent probabilistic inferences with the model. An example
is the directed square grid, which has tree-width linear on the number of
nodes in the diagonal of the grid, but maximum in-degree fixed in two. A
more effective way to constrain the sparsity of the structure is to use a bound
for the tree-width, a commonly used measure of the complexity of a graph.
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2.2. Learning BN with tree-width bound

In graph theory, the tree-width of a undirected graph is related to the tree
decomposition of the graph.

Definition 1. Tree decomposition
let G = (V,E) denote an undirected graph, where V is the set of vertices

and E is the set of edges. The tree decomposition of G is a tree T , in which
each node t ∈ T represents a subset Vt ⊆ V . T must satisfy three properties:

1. Each vertex v ∈ V belongs to at least one node t ∈ T .

2. For each edge e ∈ E connecting vertices u and v, where u, v ∈ V , there
is a node t ∈ T with u, v ∈ Vt.

3. For node t1, t2 ∈ T and each node t3 on the path between t1 and t2, if a
vertex v ∈ V belongs to both t1 and t2, it also belongs to t3.

The tree decomposition is a mapping from an undirected graph to a tree.
The width of a tree decomposition is the size of its largest set Vt minus
one. The tree-width of an undirected graph is the minimum width among all
possible tree decompositions of the graph. We define tree-width tw(G) of a
DAG G as the tree-width of its moral graph.

Definition 2. Moral graph
The moral graph M(G) of a directed graph G is the undirected graph that

contains an undirected edge between vertices u and v if:

1. There is a directed edge connecting u and v (in either direction);

2. u and v are both parents of the same vertex.

Existing exact inference algorithms and approximate ones with theoret-
ical guarantees have worst-case complexity exponential in the tree-width of
the graph (e.g., the variable elimination algorithm and the junction tree algo-
rithm). In fact, under the assumption that the exponential time hypothesis
(ETH) holds, it is shown that there is no algorithm that can solve arbitrary
instances of the inference problem in polynomial time [25]. Moreover, if
there exists an algorithm with complexity sub-exponential in the tree-width
(cO(k/ log k)) for an arbitrary inference problem, the ETH fails. The value c is
defined as the number of bits needed to describe a BN. Thus, cO(k/ log k) can
be regarded as a lower bound of the complexity of exact inference. Therefore,
it is necessary to learn a BN with bounded tree-width in order to improve its
inference efficiency. By constraining on the tree-width of a graph, the model
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is simplified, which means there is a trade-off between the representation ca-
pability and inference efficiency. We will discuss this issue (i.e., under-fitting
issue) in the experiment.

The objective of this work is to find a graph G∗,

G∗ = arg max
G

n∑
i=1

si(Xpai), s.t. tw(G) ≤ k . (4)

Directly computing the tree-width of a graph is intractable [1]. One way of
imposing the tree-width constraint is to use the family of k-trees.

Definition 3. k-trees
The family of k-trees is defined inductively as follows:

1. A (k+1)-clique is a k-tree.

2. Let G = (V,E) denote a k-tree and C ⊆ V denote a set of k vertices.
If the induced subgraph G(C) is k-clique, the graph obtained by adding
a new vertex v and an edge u−v for each u ∈ C is a k-tree.

The k-trees are the maximal graphs with tree-width k, and no more edges
can be added to them without increasing the tree-width (see [32] for details).
Therefore, every graph with tree-width at most k is a subgraph of a k-tree.
Learning a BN from a k-tree automatically satisfies the tree-width constraint
if we ensure that the moral graph of the learned BN is a subgraph of the k-
tree. A k-tree is denoted by Tk and the set of all k-trees over n nodes is
denoted by Tn,k. It is shown [5] that the total number of k-trees over n
variables is,

|Tn,k| =
(
n

k

)
(k(n− k) + 1)n−k−2 . (5)

3. Sampling k-trees using Dandelion codes

The basic idea is to efficiently search for k-trees with “high quality” and
then use K&P algorithm to learn the optimal BN from the selected k-trees.
This is accomplished in three steps. First, we propose a sampling method
that can effectively cover the space of k-trees to obtain representative k-trees.
Second, we establish an informative score (I-score) function to evaluate the
quality of each k-tree. Last, we locally refine each sampled k-tree using the
hill climbing or probabilistic hill climbing method. Therefore each explored
area is represented by a locally optimal k-tree for learning a BN.
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3.1. Effective k-tree Sampling

Directly sampling a k-tree is not trivial. Caminiti et al. [9] proposed to
establish a one-to-one correspondence between a k-tree and what is called
Dandelion codes.

Definition 4. Dandelion codes
A Dandelion code An,k is defined as a pair (Q,S), where Q ⊆ {1, 2, ..., n}

is a set of k integers, and S is a (n − k − 2) × 2 matrix of integers whose
rows are either (i, j) such that 1 ≤ i ≤ n− k and 1 ≤ j ≤ k, or (0, ε) where
ε is an arbitrary number not in {1, 2, ..., n}.

Let An,k denote the space of Dandelion codes. According to Definition 4,

An,k =

(
[1, n]

k

)
× ({(0, ε)} ∪ ([1, n− k]× [1, k]))n−k−2 , (6)

and,

|An,k| =
(
n

k

)
(k(n− k) + 1)n−k−2 . (7)

Therefore |An,k| = |Tn,k|.
An example of a Dandelion code of a 3-tree over 9 nodes (that is, n= 9,

k=3) is Q=[7, 1, 6] and,

S =


1 3
5 3
6 2
1 1

 . (8)

The corresponding k-tree is given in Fig. 1. Due to the complex mapping
procedure between Dandelion codes and k-trees, it is difficult to visually
establish the correspondence between the code and the structure.

Dandelion codes can be sampled uniformly at random by a trivial linear-
time algorithm that uniformly chooses k elements out of N to build Q. To
sample the S matrix, each row is set to (0, ε) with a probability of 1/(k(n−
k) + 1). Otherwise, the first and second entry are uniformly sampled from
[1, n− k] and [1, k], respectively. Following Definition 4, each sampled code
is valid. The sampling procedure for Dandelion codes naturally makes a
uniform prior for k-trees, which is a quite good prior in the absence of other
prior knowledge [17]. However, uniform sampling generates each sample
independently, and totally ignores previous samples, which makes it possible
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7,1,6 , 1,3; 5,3; 6,2; 1,1
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3
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8

9

Figure 1: An example of a k-tree.

to generate the very same sample twice, or at least samples that are too close
to each other. Considering the large size of the space of all Dandelion codes
(
(
n
k

)
(k(n − k) + 1)n−k−2) and the relatively small amount of samples that

we can process, we would prefer the samples to be as evenly distributed as
possible, which means we want a small number of samples to be more spread
out than uniform sampling. This is accomplished by generating the next
sample from some currently unexplored area of the sampling space. Driven
by this idea, we define the distance preferable sampling (DPS). Given the
samples of Dandelion codes A(1), A(2), · · · , A(j−1) obtained so far, we want
to decide how to sample the next A(j). A kernel density function for a new
sample can be defined as

q(A(j)) =
1

j − 1

j−1∑
i=1

K(‖A(j) − A(i)‖) , (9)

where A(j) ∈ An,k is the jth Dandelion code sample. q(A(j)) depends on
all the previous samples, with its value decreasing as A(j) moves away from
existing samples. K(·) is a Gaussian kernel function. The distance between
two Dandelion codes is defined as

‖A(j) − A(i)‖ = ‖Q(j) −Q(i)‖2 + ‖S(j) − S(i)‖2,1 , (10)
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where ‖ · ‖2 is the L2 norm. S(j) is processed as a 2× (n−k−2) matrix, and
‖ · ‖2,1 is the L2,1 norm. For an arbitrary matrix B ∈ Rr×p, its L2,1 norm is

‖B‖2,1 =
r∑
i=1

√√√√ p∑
j=1

B2
ij . (11)

When computing the distance between two Dandelion codes, we assume the
distance between 0 and n is 1 to avoid overflow issue.

Since we intend to explore the regions which have not yet been sampled,
we design a proposal distribution as follows:

p(A(j)) = 1− q(A(j))

K(0)
. (12)

p(A(j)) increases as sample A(j) moves away from all the existing samples.
Following the proposal distribution, we use the rejection sampling algorithm
(Algorithm 1) to generate a sample of Dandelion codes, and then employ
the implementation of [9] to decode it into a k-tree. One difference between
DPS and uniform sampling is that DPS considers the existing samples to
decide the next sample while uniform sampling does not. With an unlimited
amount of samples, the proposed DPS algorithm is equivalent to uniform
sampling.

Algorithm 1 Sampling a Dandelion code using DPS

Input Previous samples of Dandelion codes A(1), . . . , A(j−1).
Output a new sample of Dandelion code A(j).

1: Uniformly sample a Dandelion code A(j) in the feasible region;
2: If j = 1, the sample is accepted. If not, the sample is accepted with

probability p(A(j));
3: If A(j) is rejected, return to step 1 for another sample, until a sample is

accepted.

3.2. Informative Score for k-trees

Given a k-tree, the computational complexity of the method in [24] to
learn the optimal BN is super-exponential in k (O(k ·3k · (k+1)! ·n)). Hence,
one cannot hope to use it with too many k-trees, given current computational
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resources. Instead of learning from every k-tree without distinction, we define
the I-score function to evaluate how well a k-tree “fits the data”. The I-score
of a k-tree Tk is defined as

IS(Tk) =
Smi(Tk)

|Sl(Tk)|
. (13)

The numerator, Smi(Tk), measures how much information is lost by rep-
resenting data using the k-tree. Let eij denote the edge connecting node i
and j, and let Iij denote the mutual information of node i and j. Then,

Smi(Tk) =
∑
i,j

Iij −
∑
eij /∈Tk

Iij . (14)

If an edge eij is not included in the k-tree, we subtract the mutual informa-
tion corresponding to that edge from the optimal score. Smi is a measurement
of the consistency of the k-tree and the data, and can be interpreted either
as the sum of the mutual information covered by the k-tree or as constant
minus the sum of the mutual information lost by the k-tree. In this work,
mutual information is used to indicate how well the k-tree fits the data.

On the other hand, the denominator Sl(Tk) is defined as the score1 of the
best pseudo subgraph of the k-tree by dropping the acyclicity constraint.

Sl(Tk) = max
m(G)⊆Tk

∑
i∈N

si(xpai) , (15)

where m(G) is the moral graph of DAG G. m(G) ⊆ Tk means the moral
graph of DAG G is a subgraph of k-tree Tk, and si(xpai) is the local score
function for xi given parent set xpai .

The best pseudo subgraph of a k-tree is constructed by choosing the
best parent set for each node, compatible with the k-tree, in a greedy way.
Combining all the parent sets will result in a directed, possibly cyclic, graph.

A simple example of discovering the best pseudo subgraph of a 2-tree is
depicted in Figure 2. Given a 2-tree with the shape of a triangle, we greedily
find the best parent set for each node. In this example, suppose the best
parent sets for nodes 1, 2, 3 are {2, 3}, {1}, {2}, respectively. The best parent
set maximizes the local score (BIC, BDeu, et al.) for each node. Combining

1Pre-computed score for each node, e.g., BIC, BDeu scores.
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1 

2 3 

1 

2 3 

Figure 2: An example of finding the best pseudo subgraph of a k-tree. The best pseudo
subgraph of the 2-tree with 3 nodes (left) is a directed graph with a cycle (right).

all the parent sets will result in a directed, possibly cyclic, graph which is the
best pseudo subgraph of the 2-tree. The score for this subgraph is calculated
as

Sl(T2) = s1({2, 3}) + s2({1}) + s3({2}) . (16)

Given the pre-computed scores for each variable, score Sl can be computed
in linear time. Typical score functions Sl are negative, so for practical reasons
we use the term 1/|Sl(Tk)| in the I-score formulation.

The I-score can be very efficiently evaluated for any given k-tree, as com-
puting Smi requires only mutual information of pairs of nodes (which can all
be pre-computed, so time complexity is at most O(n2)).

3.3. Hill Climbing

The sampling method in Section 3.1 only considers the distances between
Dandelion codes to better spread the samples in whole Dandelion code space.
It, however, does not ensure the quality of the sampled k-trees. The I-score
proposed in Section 3.2 can measure a given k-tree. To combine these two
ideas, we propose to refine a sampled Dandelion code using a local search
algorithm based on hill climbing. Therefore, the search for the best k-tree
(or Dandelion code) can be formulated as a local optimization problem.

Hill climbing algorithm has been used for BN structure learning [36]. In
this work, we apply the hill climbing in the space of the Dandelion codes.

Denote N (A) as all the neighbors of code A,

N (A) = {Ai : ‖Ai − A‖ = 1} . (18)

According to the definition of the distance (Eq. 10), two Dandelion codes
are neighbors to each other if they differ by exactly one entry, and all other
entries are the same.
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Algorithm 2 Hill climbing to refine a Dandelion code.

Input Dandelion code A, mutual information Iij, ∀i, j ∈ N ;
Output Dandelion code A∗.

1: Obtain the initial code A0 = A, and A∗ = A;
2: while local optimum is not reached do
3: Search in the neighbors of the current code. Find the one with the

largest I-score;
At = arg max

A∈N (At−1)
IS(A) , (17)

4: if IS(A∗) < IS(At) then
5: Update the current best state A∗ = At;
6: end if
7: end while
8: Return the last code A∗.

The main idea of hill climbing is that given an initial Dandelion code
(initial state) resulted from the proposed sampling method, consider all the
possible neighbors of the code, and make a move to the next code with the
largest I-score improvement. The procedure is repeated until no neighbor has
larger score than the current code. The last code is a local optimum with
respect to the initial code. The hill climbing algorithm to refine a Dandelion
code is summarized in Algorithm 2. Since the Dandelion code A and the k-
tree Tk has a bijective relationship, we do not differentiate IS(A) and IS(Tk)
in the following text.

Ideally, Dandelion codes close to each other should result in k-trees close
to each other. If we use the Hamming distance to measure the closeness
of two k-trees, and Eq. (10) to measure the closeness of Dandelion codes,
it turns out that the distance is not preserved in the mapping. However,
we believe it does not affect the proposed search algorithm. First of all,
uniformly sampling a Dandelion code is equivalent to uniformly sampling a
k-tree, since there is a one-to-one correspondence between the code and the
k-tree. Second, local search in the Dandelion code space only identifies a
neighboring code and the quality of the code is determined by the I-score of
the corresponding k-tree. Hence, local search of the Dandelion code improves
the I-score of the k-tree, even though this k-tree is not necessarily a neighbor
of the current k-tree. The goal of obtaining a k-tree of higher quality is
achieved.
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One shortcoming with the conventional hill climbing algorithm is that
once it reaches a local optimum, it will get stuck there, unless a new starting
code is considered. In order to alleviate this issue and have a better chance
to reach a better code, we employ a probabilistic version of the hill climbing
approach (PHC). When considering all the possible neighbors of the current
code, the next move is chosen probabilistically based on their potential to
improve the scores. Therefore, instead of finding the path deterministically,
PHC probabilistically moves to next code and hence reduces the chance of
getting trapped in a local optimum.

Algorithm 3 Probabilistic hill climbing to refine a Dandelion code.

Input Dandelion code A, mutual information Iij, ∀i, j ∈ N ;
Output Dandelion code A∗.

1: Initialize the state A0 = A, and A∗ = A;
2: while convergence is not reached do
3: for Ai ∈ N (At−1) do
4: Compute the probability Pi of moving to state Ai using Eq. 20;
5: end for
6: Sample the next move At based on the distribution {Pi};
7: if IS(A∗) < IS(At) then
8: Update the current best state A∗ = At;
9: end if

10: end while
11: Return A∗.

If code A is the current code with I-score s, assume its neighbor Ai has
the I-score of si. That is,

IS(Ai) = si , ∀Ai ∈ N (A) . (19)

To calculate the probability of moving to a certain state, we employ the
Boltzmann distribution, in which the improvement of a potential move over
the current code si − s is treated as the negative energy function,

Pi =
1

Z
exp

(
si − s
T

)
. (20)

where Z is the normalization term to ensure a valid probability distribution.
T is a small positive number called Boltzmann constant, or temperature,
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which controls the shape of the distribution. A large value for T makes
the distribution close to uniform (maximum entropy), which gives relatively
equal chance to move to any neighbor. When using a small value of T,
the distribution Pi has the shape of a delta function, strongly favoring the
neighbor with the largest I-score, and probabilities for other moves are small.
In the extreme case, T → 0, the probability of moving to the neighbor with
the highest I-score is 1, and the PHC method degenerates to HC method.

The probabilistic nature of PHC is the key feature to increase the chance
of escaping from local optima. It randomly chooses a move based on the
potential improvement of each neighbor. The PHC method is terminated if
the scores in several consecutive moves do not improve, and the best state
along the process is returned as the solution. Algorithm 3 summarizes the
PHC algorithm to refine a Dandelion code.

3.4. BN Learning from Sampled k-trees

Combining the ideas in Sections 3.1, 3.2 and 3.3, we present Algorithm 4
as an approximate algorithm for learning BNs of bounded tree-width.

Due to the fact that k-trees with large I-scores are more likely to have
better subgraphs, we give them high priority to learn the corresponding BN.
This is reflected in Step 4 of Algorithm 4. Given a k-tree as the super
structure, the implementation of K&P is employed as an exact method to
learn the optimal BN. The goal of Algorithm 4 is to restrict the calls to
K&P (which is a time consuming method with complexity O(k3k(k + 1)!n),
even if linear in n) only to k-trees that are promising. Alternatively, the
implementation of [29] is used as an approximate method to learn a BN from
a k-tree, which is more suitable for larger data sets.

Once a BN is learned, the variable elimination algorithm is used for exact
inference, which requires a variable elimination order. When eliminating
a variable, cliques may be generated. The induced width is defined as the
size of the largest clique minus 1. The tree-width of a BN is the minimum
induced width among all possible elimination orders. In order to perform
exact inference with minimum complexity, an optimal variable elimination
order is required. In general, identifying the optimal elimination order is NP-
hard. However, learning from super structure (k-tree) automatically encodes
an optimal elimination ordering. By converting the k-tree into a clique tree,
we just need to eliminate the nodes from the leaves until the root. A node is
eliminated when it does not appear in the parent (parent meaning the next
clique in the direction of the root clique). Since every clique has the size of
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k, it provides an elimination ordering with induced width at most k. In fact,
because a subgraph is learned, there can be even elimination orderings with
induced width less than k, but that might be hard to find. Therefore, the
complexity of exact inference is actually achieved without going through all
possible orderings.

Algorithm 4 Learning a Bayesian network structure of bounded tree-width
by sampling Dandelion codes.

Input score function si, ∀i ∈ N , mutual information Iij, ∀i, j ∈ N
Output a DAG Gbest.

1: Initialize G∗i as an empty set for all i ∈ N ;
2: while time limit is nor reached do
3: Sample a Dandelion code (Q,S) ∈ An,k according to Algorithm 1;
4: Local refinement for the sampled Dandelion code using the HC method

(Algorithm 2) or PHC method (Algorithm 3);
5: Transfer the code into a k-tree Tk.
6: Find a DAG G that maximizes the score function and is consistent

with Tk;
7: if

∑
i∈N si(Gi) >

∑
i∈N si(G

∗
i ) then

8: Update G∗i , ∀i ∈ N .
9: end if

10: end while

4. Experiments

To empirically evaluate our method, we use a collection of data sets from
the UCI repository [3] of varying dimensionality, as well as synthetic and real
networks. The experiments consist of four parts. Firstly, we demonstrate
the effectiveness of the I-scores of the k-trees by establishing its relationship
with the BDeu scores of the learned BNs. Secondly, we compare the BDeu
scores of the learned BNs using the proposed methods with the results from
the state-of-the-art methods. Thirdly, we investigate the trade-off between
inference accuracy and time. Finally, we study the under-fitting issues.

4.1. Informative Score

In this section, we evaluate the I-score as a measurement of how good a
k-tree would be to “produce” a BN structure as its subgraph. Nine data sets
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Table 1: Dimensions of data sets used in the experiments.

data set vars samples

nursery 9 12960
breast 10 699

housing 14 506
adult 15 32561
zoo 17 101

letter 17 20000
mushroom 22 8124

wdbc 31 569
audio 62 200

(nursery, breast, housing, adult, zoo, letter, mushroom, and wdbc), whose di-
mensions are summarized in Table 1, were used. Non-binary variables were
binarized over the median value. Instances with missing values were dis-
carded. In all experiments, we maximized the Bayesian Dirichlet equivalent
uniform (BDeu) score with equivalent sample size equal to one [22].

Table 2: Correlation coefficients of the I-scores scores and the BDeu scores on different
data sets.

data set CorrCoef

nursery 0.976
breast 0.932

housing 0.892
adult 0.925
zoo 0.911

letter 0.782
mushroom 0.711

wdbc 0.701
audio 0.741

For each k-tree, we compared its I-score and the BDeu score of the BN
as the subgraph of the corresponding k-tree. We sampled 1,000 k-trees and
discovered the optimal BN subject to the corresponding k-tree. For the
nursery, breast, housing and adult data sets, we used the K&P algorithm
to exactly learn the BN subject to the k-tree. For the other data sets, due
to the larger number of variables, the exact algorithm fails due to memory
limitation issue. We used the approximate algorithm in [29] to learn the
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BN from k-trees. To empirically show the correlation of the two scores, we
estimated the correlation coefficients of the I-scores and the BDeu scores, as
reported in Table 2. The scores for two data sets (breast and housing) with
tree-width bound equal to two are plotted in Figure 3.

As shown in Table 2 and Figure 3, there is a strong linear positive correla-
tion between the BDeu score of the BN and the I-score of its super-structure
(k-tree). The correlation coefficients are over 0.7 in all cases. Generally,
better k-trees in terms of I-scores will lead to better BNs in terms of BDeu
scores. If the tree-width bound is increased, the linear correlations improves
since the learned model under tree-width constraint is more similar to the
model learned without tree-width constraint.
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Figure 3: Relationship of the BDeu scores of Bayesian networks and the I-scores for k-trees.
(a) breast and (b) housing data sets.

4.2. Bayesian Network Learning

In this section we compare the BDeu scores of the structures learned by
our proposed method against the scores from the state-of-the-art approaches.

We first compare with a baseline method proposed in [24], denoted as
the K&P algorithm2. K&P method is an exact algorithm based on dynamic
programming. Due to the complexity of this method, it is only applicable to
some relatively small data sets, hence our comparisons are restricted to those
cases. The detailed computational time that K&P uses is given in Table 3.
The algorithm is run using a desktop computer with 64GB of memory. Max-
imum number of parents is set to three. Due to the huge amount of memory

2http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/
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cost, for housing and adult data sets with tree-width more than 2, as well
as breast with tree-width bound 5, the algorithm failed to give a solution.
Correspondingly, we sampled 100 k-trees using the DPS scheme with PHC
and recorded the running time for the proposed algorithm to give a solution,
given the same data set and the same choice of maximum tree-width. The
BDeu scores of the best BNs found with both algorithms are also presented.
By examining only a small portion of k-trees, the proposed algorithm finds
solutions with an BDeu score difference less than 1% for most cases. The
complexity does not increase with the tree-width. The PHC algorithm is
much more efficient than K&P algorithm, except for the smallest two data
sets and tree-widths, for which the 100 k-trees are typically identical to each
other. Generally speaking, the proposed algorithm achieves comparable re-
sults to those of the exact method in terms of BDeu score difference. Yet
when considering the time and memory costs of the exact solution, the pro-
posed algorithm is more efficient against the competing method by several
orders of magnitude.

Table 3: Computational time of the K&P method to find the optimal Bayesian network
structure, and the proposed method to sample 100 k-trees, as well as the resulting BDeu
scores of the networks found by both methods. Empty cells indicate that the method
failed to solve the problem because of excessive memory consumption. s,m mean seconds
and minutes, respectively.

Time Score

method tw nursery breast housing adult nursery breast housing adult
n=9 n=10 n=14 n=15 n=9 n=10 n=14 n=15

2 7s 26s 128m 137m -72160 -2688.4 -3295.4 -201532
K&P 3 72s 5m – – -72159 -2685.8 – –

4 12m 103m – – -72159 -2685.3 – –
5 131m – – – -72159 – – –

2 4.3m 4.6m 9.1m 10.4m -72187 -2690.5 -3341.7 -209123
PHC 3 4.4m 4.6m 9.2m 10.5m -72163 -2685.8 -3312.1 -204116

4 4.4m 4.7m 9.2m 10.5m -72159 -2685.3 -3202.9 -200627
5 4.4m 4.8m 9.3m 10.5m -72159 -2685.3 -3202.9 -200613

It should be noted that in some cases the scores do not always increase
with the tree-width bound k, as indicated in Table 3. The optimal BN given
the data already has tree-width less than k, setting a larger tree-width bound
will not increase the score.

The BDeu scores of the BNs learned using the PHC+S2 algorithm with
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Table 4: BDeu scores of the BNs learned using PHC+S2 with different tree-width bounds.

data set k = 2 k = 3 k = 4 k = 5
nursery (·104) -7.219 -7.216 -7.216 -7.216

breast (·103) -2.691 -2.686 -2.685 -2.685
housing (·103) -3.341 -3.312 -3.203 -3.203

adult (·105) -2.091 -2.041 -2.006 -2.006
zoo (·102) -7.150 -5.840 -5.770 -5.770

letter (·105) -1.983 -1.879 -1.856 -1.856
mushroom (·104) -7.906 -6.145 -5.974 -5.910

wdbc (·103) -9.132 -7.289 -7.128 -7.125
audio (·103) -2.242 -2.130 -2.120 -2.118

varying tree-width bounds on larger data sets are reported in Table 4. Gen-
erally speaking, increasing tree-width will lead to larger BDeu scores until
the actually tree-width does not increase (actual tree-width is smaller than
the bound).

Next, we compare the proposed methods against the existing approxi-
mate methods. Based on how to obtain a k-tree, these methods include
distance preferable sampling (DPS), A* search (A*) [28], hill climbing (HC)
and probabilistic hill climbing (PHC). Based on the algorithm to learn a BN
from the k-tree, methods are further categorized into exact method (K&P)
[24] or approximate method (S2) [29]. Other exact methods are also included,
such as the MILP algorithm, the TWILP algorithm3 [31] and the GOBNILP
algorithm4 [4]. Note that GOBNILP is an exact structure learning algorithm
without tree-width constraint. It is included to show how much information
is lost by constraining the tree-width of the graph. The running time for
the approximate method is set to 10 minutes. The MILP method is given
10 minutes or 3 hours running time. If the exact solution is not found, the
current best structure is returned, which is the case in the mushroom, wdbc
and audio data sets for the MILP method. The Boltzmann constant T in
PHC method is set to 0.05.

The results are reported in Table 5 and Table 6. It can be seen that for
the smallest networks (nursery and breast), most approximate algorithms
were able to find a structure that is very close to the global optimal one.
The HC and PHC methods exactly found the optimal structures. The PHC

3https://bitbucket.org/twilp/twilp/
4https://www.cs.york.ac.uk/aig/sw/gobnilp/
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Table 5: Comparison of the performance of different approximate methods with tree-width
limit 4 to the exact algorithm without tree-width bound. The mean value in 10 runs with
different seeds is reported. The number in the parenthesis is the standard deviation of the
scores. Gap is the relative score difference between PHC+S2 and GOBNILP. Empty cells
indicate no solution found within the time limit.

data set DPS+K&P A*+S2 HC+S2 PHC+S2 GOBNILP Gap
nursery (·104) -7.216 (0) -7.216 (0) -7.216 (0) -7.216 (0) -7.216 0

breast (·103) -2.691 (0.005) -2.686 (0.003) -2.685 (0) -2.685 (0) -2.685 0
housing (·103) -3.285 (0.039) -3.211 (0.030) -3.213 (0.035) -3.203 (0.032) -3.159 1.4%

adult (·105) -2.024 (0.026) -2.007 (0.016) -2.010 (0.014) -2.006 (0.010) -2.004 0.1%
zoo (·102) -6.091 (0.195) -5.794 (0.156) -5.801 (0.168) -5.770 (0.133) -5.615 2.8%

letter (·105) -1.924 (0.050) -1.860 (0.035) -1.867 (0.039) -1.856 (0.026) -1.840 0.9%
mushroom (·104) -6.852 (0.219) -5.999 (0.126) -6.149 (0.166) -5.974 (0.143) -5.557 7.5%

wdbc (·103) -8.352 (0.342) -7.143 (0.264) -7.268 (0.291) -7.128 (0.278) -6.863 3.9%
audio (·103) - -2.126 (0.111) -2.203 (0.119) -2.120 (0.117) -2.013 5.3%

method always outperformed HC method, indicating that the probabilistic
move in the PHC could help in escaping from local optima and finding bet-
ter k-trees. In most cases, the PHC method achieved the best performance
among all approximate methods, demonstrating its effectiveness. Specifi-
cally, compared to the second best approximate method (A* search), the
PHC method can improve the accuracy by an average of 0.2%. The relative
difference between PHC+S2 and unconstrained structure learning algorithm
(GOBNILP) in terms of BDeu scores is less than 8% in all cases. In terms
of the ILP-based algorithms, time limit of 10 minutes and 3 hours produce
the same structure score for the two ILP-based methods on 5 data sets. In
10 minutes, HPC+S2 has at most 2.2% relative score difference compared to
the best ILP-based algorithm. For the largest data set (audio), the proposed
PHC method even outperforms the exact approaches.

4.3. Inference Accuracy and Complexity

A BN with low tree-width has guaranteed inference complexity. We con-
structed two heavily connected BNs with 50 and 60 nodes, Rand50 and
Rand60 (See Figure 4 (a) for a illustration), respectively. For simplicity, all
the nodes were set binary. The (conditional) probability distribution for each
node is randomly generated. Another four real networks (Barley, Hailfinder,
Hepar2, and Pathfinder) were also included in the experiment, one of which
(Pathfinder network) is shown in Figure 4 (b). The important details of the
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Table 6: BDeu scores of the structures learned using PHC+S2 and different exact methods.
Tree-width bound is set to 4, except for the Chow-Liu algorithm, which learns a tree (tree-
width 1). The mean in 10 runs with different seeds is reported. (*) indicates probably
optimal scores.

data set PHC+S2 Chow-Liu MILP10m MILP3h TWILP10m TWILP3h

nursery (·104) -7.216 -7.657 -7.216* -7.216* -7.216* -7.216*
breast (·103) -2.685 -3.877 -2.685* -2.685* -2.685* -2.685*

housing (·103) -3.203 -4.581 -3.159* -3.159* -3.269 -3.205
adult (·105) -2.006 -2.153 -2.004* -2.004* -2.009 -2.007

zoo (·102) -5.770 -9.690 -5.645 -5.624* -5.782 -5.782
letter (·105) -1.856 -2.251 -1.863 -1.843* -1.907 -1.884

mushroom (·104) -5.974 -10.217 -5.898 -5.783 -6.628 -6.381
wdbc (·103) -7.128 -12.163 -7.700 -6.995 -7.831 -7.788
audio (·103) -2.120 -2.355 -2.541 -2.541 -2.254 -2.161

networks are shown in Table 7. Besides the six networks, we also evaluated
our algorithm on the data sets in Section 4.2, as well as two data sets with
100 random variables, hill and community. For the data sets without ground
truth networks, the GOBNILP algorithm was employed to learn the struc-
ture without tree-width bound. PHC+S2 algorithm was used for structure
learning with tree-width bound 3, with 10,000 samples generated from these
networks. Specifically, from a ground true graph G0, we generated samples
and learned the structures G1 with different tree-width bounds. For low tree-
width, we learned networks with tree-width 0 (a graph with no edge) and 1
(a tree). For moderate tree-width, we used the PHC+S2 method to learn
structures with tree-width bounds 2, 3 and 4. For high tree-width, we used
the ground truth networks with unbounded tree-width. Training time limit
is set to 30 minutes. Junction tree algorithm is used for exact inference, to
which we provide the corresponding optimal elimination order obtained from
the k-tree (Section 3.3).

We want to study the trade-off between inference complexity and infer-
ence accuracy. We first study the marginal distribution of a single variable.
As a measurement of the inference complexity, we use the total running time
of 1,000 marginal distribution computation, averaged over all variables. The
measurement of model accuracy includes three parts. First, we use the av-
erage KL divergence of the marginal distribution of each node, denoted as
KL1,

KL1 =
1

n

∑
i

KL (P (xi)‖P0(xi)) , (21)
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Table 7: Six networks (2 synthetic, 4 real) used for the evaluation of the trade-off between
inference complexity and accuracy. fan-in and fan-out means maximum number of parents
and children.

network nodes edges fan-in fan-out

Rand50 50 283 7 22
Rand60 60 517 10 41

Barley 48 84 4 5
Hailfinder 56 66 4 16

Hepar2 70 123 6 17
Pathfinder 135 200 4 130
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Figure 4: Illustration of (a) Rand60 network and (b) Pathfinder network.

where n is the number of variables; p(xi) and p0(xi) are the estimated and
true marginal distribution for node xi, respectively.

To have an intuitive understanding of the KL divergence, we use the
absolute and relative distance of the marginal distributions as the second
and third measurements of accuracy,

Dabs =
1

n

∑
i

‖P (xi)− P0(xi)‖1 , (22)

Drel =
1

n

∑
i

‖P (xi)− P0(xi)

P0(xi)
‖1 . (23)

where ‖·‖1 is the L1 norm. For each variable, it is computed as the summation
of all values. The results are then averaged over all variables.
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Table 8: Inference accuracy and time of Rand50 and Rand60 networks in terms of marginal
distribution of a single variable. Tree-width bound is set to 3.

Rand50 Rand60
Learned Original Learned Original

Time (s) 0.17 0.38 0.17 5.27
KL1 9.96× 10−4 9.17× 10−4

Dabs 1.29× 10−3 6.36× 10−4

Drel 0.21% 0.13%

Table 9: The inference accuracy and time of real networks and data sets. Tree-width
bound is set to 3. Ratio is the ratio of the inference time of learned network to that of
the original network. t0 and t1 are the average inference time for the original and learned
networks, respectively.

network KL1 Dabs Drel t0 t1 Ratio

Barley 0.0174 0.0056 1.08 % 0.746 0.199 26.7%
Hailfinder 0.0020 0.0004 1.25% 0.238 0.232 97.7%

Hepar2 0.0010 0.0047 6.04% 0.215 0.205 95.3%
Pathfinder 0.0322 0.0346 6.76% 0.256 0.254 99.4%

nursery 0 0 0% 0.045 0.045 100%
breast 0 0 0% 0.056 0.056 100%

housing 0.0008 0.0038 0.52% 0.113 0.109 96.5%
adult 0.0025 0.0012 0.92% 0.134 0.116 86.6%
zoo 0.0009 0.0004 1.03% 0.110 0.094 85.4%

letter 0.0011 0.0033 0.68% 0.127 0.117 92.1%
mushroom 0.0048 0.0112 1.91% 0.247 0.139 56.3%

wdbc 0.0021 0.0043 0.88% 0.285 0.184 64.6%
audio 0.0024 0.0032 1.34% 0.379 0.264 69.7%
hill 0.0078 0.0069 1.21% 0.256 0.221 86.3%

community 0.0061 0.0045 1.03% 0.452 0.311 68.8%
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The inference time is measured by the ratio of the running time of the
learned network to that of the original network. The results are given in Table
8 and 9. For Rand50, Rand60 and Barley networks, there is a huge saving
in the inference time (44.2%, 3.2% and 27.1%, respectively). The inference
complexity is significantly reduced using the proposed algorithm, while the
accuracy of marginals is well maintained. The average marginal distribution
of the learned network is merely 0.21% away from the true distribution for
Rand50 network, 0.13% for Rand60 and 1.08% for Barley, which means
the learned network is close to the original network in terms of the marginal
distribution of a single variable. For the data sets, a larger size of the network
results in more significant savings in the running time. Comparing with Table
5, a large score gap in the learned structure does not translate to larger
inference gap. For example, the relative score difference for the mushroom
data set is 7.5%, the relative different in the marginal distribution is only
1.91%.

The first three networks are very complex. However, if the original net-
work already has a low tree-width, there will not be much savings on the
inference time. For example, in the Hailfinder, Hepar2 and Pathfinder net-
works, most of the cliques in the junction tree have the size of 2. Therefore,
the inference computation in the original network is already efficient, espe-
cially for the Pathfinder network, which has a tree-like structure, as shown
in Figure 4 (b), even though the network has over 100 nodes. In such cases,
bounding the tree-width will not result in considerable reduction of the in-
ference complexity.

Next we evaluate the performance of the proposed learning algorithm
in terms of computing the marginal distribution of two or more random
variables. Specifically, for every pair of variables xi and xj in the network,
the KL-2 divergence is computed as,

KL2 =
2

n(n− 1)

∑
i,j

KL(P (xi, xj)‖P0(xi, xj)) . (24)

The KL-3 divergence is computed as,

KL3 =
6

n(n− 1)(n− 2)

∑
i,j,k

KL(P (xi, xj, xk)‖P0(xi, xj, xk)) . (25)

The evaluation criterion for inference accuracy is the KL divergence be-
tween the learned structure G1 and the ground truth structure G0, using
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Figure 5: The KL divergence (normalized using the network with unbounded tree-width
for easy view of relative improvement) and ratio of the running times for singletons (a, b),
pairs (c, d), and triples (e, f). 25



the marginal distribution of singletons, pairs and triples of variables. The
evaluation criterion for inference complexity is the ratio of inference time for
G1 and G0. The KL divergence and running time are shown in Figure 5. The
absolute values of the KL divergence are given in Table 10 - Table 12.

Table 10: Absolute KL-1 values for different networks with different tree-width bounds.

network k = 0 k = 1 k = 2 k = 3 k = 4 k =∞
Barley 0.0185 0.0180 0.0174 0.0173 0.0173 0.0173

Hailfinder 0.0023 0.0022 0.0022 0.0022 0.0022 0.0022
Hepar2 0.0012 0.0011 0.0010 0.0010 0.0010 0.0010

Pathfinder 0.0342 0.0336 0.0322 0.0321 0.0321 0.0321
Rand50 0.0012 0.0010 0.0010 0.0010 0.0010 0.0010
Rand60 0.0012 0.0010 0.0009 0.0009 0.0009 0.0009

Table 11: Absolute KL-2 values for different networks with different tree-width bounds.

network k = 0 k = 1 k = 2 k = 3 k = 4 k =∞
Barley 0.0120 0.0067 0.0065 0.0065 0.0065 0.0065

Hailfinder 0.0153 0.0094 0.0092 0.0092 0.0092 0.0092
Hepar2 0.0147 0.0079 0.0077 0.0078 0.0078 0.0078

Pathfinder 0.0214 0.0105 0.0101 0.0100 0.0102 0.0102
Rand50 0.0110 0.0042 0.0041 0.0040 0.0040 0.0040
Rand60 0.0161 0.0080 0.0074 0.0074 0.0074 0.0074

Table 12: Absolute KL-3 values for different networks with different tree-width bounds.

network k = 0 k = 1 k = 2 k = 3 k = 4 k =∞
Barley 0.0138 0.0087 0.0075 0.0069 0.0069 0.0069

Hailfinder 0.0109 0.0076 0.0064 0.0063 0.0063 0.0062
Hepar2 0.0082 0.0047 0.0043 0.0041 0.0041 0.0041

Pathfinder 0.0241 0.0114 0.0102 0.0100 0.0095 0.0095
Rand50 0.0148 0.0053 0.0040 0.0039 0.0038 0.0038
Rand60 0.0102 0.0057 0.0048 0.0047 0.0046 0.0046

For the inference complexity, in all experiments, the time required to
perform inference increases with the tree-width bound, unless the tree-width
bound reaches the tree-width of the ground truth graphs, which is the case
for the Hailfinder, Hepar2 and Pathfinder networks.
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For the inference accuracy, generally speaking, increasing the tree-width
from 0 to 3 can improve the inference accuracy. Tree-width 3, 4 and un-
bounded tree-width have similar performances, indicating that networks with
moderate tree-width are nearly as good as the ones with high tree-width for
the data sets we used. One thing to mention is that for two of the net-
works (Barley and Pathfinder), an empty network (tree-width 0) achieves
the KL-divergence 7% worse than the tree structure (tree-width 1). This is
because the empty network assumes variables to be independent, and there
are no complex interactions among the variables in the true networks (the
Pathfinder network has a tree structure as shown in Fig. 4 (b)). For the other
four networks, empty networks are at least 15% worse than tree structures.

4.4. Under-fitting

Table 13: Details about the data sets used to evaluate the classification performance of
different classifiers.

data set vars classes samples training testing

australian 14 2 690 552 138
breast 9 2 683 544 136

tic-tac-toe 9 2 958 764 191
cmc 9 2 1473 1176 294
chess 36 2 3196 2130 1066

The tree-width bound is a constraint to ensure the sparsity of the learned
structure. Therefore, there is a potential that learning with bounded tree-
width could lead to under-fitting. It is shown that [7] to approximate a
target distribution using a BN within a certain distance δ in terms of KL
divergence, there exists the effective tree-width k(δ), which is the smallest
achievable tree-width. If the tree-width bound we selected is smaller than
the effective tree-width, under-fitting could happen.

To study this issue in terms of classification, we empirically evaluated the
classification capability of the learned BN. We took 5 data sets from the UCI
machine learning repository (i.e., australian, breast, tic-tac-toe, cmc, and
chess), and implemented 7 other structure learning methods (i.e., PC ([34]),
TDPA [11], GES [12], MMHC [36], SC [21], Naive Bayesian Classifier (NBC)
and RAI [37]) in terms of classification accuracy. The details of the data
sets are given in Table 13. All data sets were analyzed using a 5-fold cross-
validation experiment, except chess, which was analyzed using the holdout
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Table 14: Mean values for 5-fold cross-validation experiments of the classification accuracy
of the PHC+S2 algorithm in comparison to those of the PC, TPDA, GES, MMHC, SC,
NBC and RAI algorithms. Standard deviations are given in the parenthesis except the
chess data set because it uses a holdout division for training and testing sets. The results
may vary from [37] due to different folds in the cross-validation.

data set australian breast tic-tac-toe cmc chess

PC 85.8 (0.4) 95.3 (1.9) 71.4 (1.3) 51.2 (2.2) 91.1
TDPA 84.8 (0.3) 94.2 (2.9) 72.5 (3.2) 42.4 (2.8) 89.1
GES 84.5 (2.2) 96.8 (1.1) 70.3 (2.9) 45.7 (1.4) 95.2

MMHC 86.5 (1.2) 95.4 (1.5) 70.8 (3.2) 47.9 (2.5) 94.5
SC 85.3 (1.1) 96.7 (0.9) 71.1 (4.3) 48.1 (2.3) 93.4

NBC 85.7 (3.4) 97.4 (1.1) 69.9 (3.2) 51.8 (1.2) 86.2
RAI 85.3 (1.3) 96.4 (1.3) 73.2 (1.8) 53.3 (2.9) 93.8

PHC (k=2) 85.8 (3.1) 96.0 (2.8) 66.1 (3.2) 51.3 (3.0) 88.7
PHC (k=3) 86.2 (2.9) 95.7 (2.8) 82.7 (2.9) 51.3 (3.0) 90.3
PHC (k=4) 86.2 (2.9) 95.5 (2.8) 81.9 (2.9) 51.3 (3.0) 91.5

methodology due to the large size. Continuous variables were binarized over
the mean value, and instances with missing values were removed. The data
sets contain a variable representing the label. For example, in the australian
data set, one binary variable represents the Australian credit card approval
decision. The other variables are used as features. The classification is
to determine the label given all the features, by computing its posterior
probability in the BN. The PHC+S2 algorithm was given 10 minute running
time for the australia, breast, tic-tac-toe and cmc data sets. For the chess
data set, due to its relatively larger size, we gave it 30 minute running time.

The results are summarized in Table 14. On three data sets (i.e., aus-
tralian, tic-tac-toe, and cmc), the proposed PHC algorithm outperformed the
competing algorithms in terms of classification accuracy, and on the other
data sets (i.e., breast, and chess), it is comparable to other algorithms. This
empirically indicates that under-fitting did not happen on these data sets.
The NBC method learns a tree structure with tree-width 1. In terms of
classification, it gives a very good approximation in most cases. However
it requires all variables, besides the label, for classification, while other net-
works employ a subset of variables consisting of the Markov Blanket of the
label, which can perform feature dimension reduction and feature selection.
For the other learning algorithms, the learned structures already have small
tree-width on the first four data sets (3 for tic-tac-toe, 4 for australian, breast
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and cmc), therefore classification performance is similar. For the chess data
set, the structure learned by other approaches has tree-width at least 6.
The classification result indicates that for these data sets, the relationship
of random variables can be effectively captured using networks with a small
tree-width. Bounding the tree-width to 4 does not lose much accuracy in
representing the underlying distribution.

5. Conclusion

In this paper we present a sampling method for learning Bayesian net-
works with bounded tree-width. The sampling is based on a bijection be-
tween Dandelion codes and k-trees. We design a distance preferable sampling
scheme to effectively cover the space of k-trees, as well as an informative score
function to evaluate each k-tree. Based on the I-score, a local search method
is employed to refine the k-trees. These ideas allow to quickly find represen-
tative k-trees of high quality. To further improve the quality of the sampled
k-trees, a conventional hill climbing approach and a probabilistic hill climbing
are proposed to refine the sampled k-trees locally. Experiments indicate that
the proposed method reaches comparable accuracy to the exact algorithms
in terms of BDeu scores, but is much more efficient in terms of learning
speed, and can scale up to larger networks and larger tree-widths. More-
over, experiments show that the proposed probabilistic hill climbing method
outperforms most existing approximate methods on various data sets.
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