

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

Learning Bayesian Networks with the Saiyan algorithm

ANTHONY C. CONSTANTINOU, Queen Mary University of London

Some structure learning algorithms have proven to be effective in reconstructing hypothetical Bayesian

Network (BN) graphs from synthetic data. However, in their mission to maximise a scoring function, many

become conservative and minimise edges discovered. While simplicity is desired, the output is often a graph

that consists of multiple independent subgraphs that do not enable full propagation of evidence. While this is

not a problem in theory, it can be a problem in practice. This paper examines a novel unconventional

associational heuristic called Saiyan, which returns a directed acyclic graph that enables full propagation of

evidence. Associational heuristics are not expected to perform well relative to sophisticated constraint-based

and score-based learning approaches. Moreover, forcing the algorithm to connect all data variables implies

that the forced edges will not be correct at the rate of those identified unrestrictedly. Still, synthetic and real-

world experiments suggest that such a heuristic can be competitive relative to some of the well-established

constraint-based, score-based, and hybrid learning algorithms.

CCS Concepts: • Computing methodologies → Machine learning; Artificial Intelligence

KEYWORDS

Bayesian networks, directed acyclic graphs, graphical models, structure learning

ACM Reference format:

Anthony Constantinou. 2020. Learning Bayesian Networks with the Saiyan algorithm. ACM Transactions on

Knowledge Discovery from Data, XXXX. 2 (XXXX 2020), XX pages.

https://doi.org/

This research was supported by the ERSRC Fellowship project EP/S001646/1 on Bayesian Artificial

Intelligence for Decision Making under Uncertainty, and by The Alan Turing Institute in the UK.

Author’s addresses: A. C. Constantinou, Bayesian Artificial Intelligence research lab, Risk and Information

Management (RIM) research group, School of Electronic Engineering and Computer Science, Queen Mary

University of London, London, UK, E1 4NS; e-mail: a.constantinou@qmul.ac.uk; The Alan Turing Institute,

British Library, 96 Euston Road, London, NW1 2DB, UK.

1 INTRODUCTION

A Bayesian Network (BN) is a type of a probabilistic graphical model introduced by Pearl [1],

[2]. If we assume that the arcs between nodes in a BN model represent causation, then a BN is a

unique Directed Acyclic Graph (DAG) that enables us to reason about intervention. However, if

we assume that the arcs between nodes represent some dependency that is not necessarily a causal

relationship, then a BN is a Partial Directed Acyclic Graph (PDAG) and hence, not a causal

graph. A PDAG, also called patterns by Spirtes et al [3], essential graphs by Anderson et al [4],

and maximally oriented graphs by Meek [5], incorporates both directed and undirected edges and

represents an equivalence class of DAGs [6].

Constructing BNs typically involves two steps: a) determining the graphical structure of

the model that captures the relationships between variables, and b) parameterising the Conditional

Probability Tables (CPTs) to capture the relationship between variables. The graph of a BN can

be determined by knowledge, learned from data, or a combination of both. In this paper we are

interested in learning BN graphs from observational data, which is a particularly challenging and,

depending on the number of variables, an NP-Hard problem [7], [8].

01

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/323050413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

39:2 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

The algorithms that learn the graphical structure of a BN typically fall under two

categories. First, the score-based methods represent a classic machine learning approach where

algorithms search for different structures and score them, in terms of how well the fitting

distributions agree with the empirical distributions, determined by a scoring function. The graph

with the highest score is returned as the preferred graph. Popular score-based algorithms include

the K2 [9], Sparse Candidate [10], Optimal Reinsertion [11], and the GES algorithm [12].

Second, the constraint-based methods use conditional independence tests to establish

edges between variables, often under causal or influential assumptions. This learning process was

inherited from the Inductive Causation (IC) algorithm [13]. The Peter Clark (PC) algorithm [3],

some variants of the Greedy Equivalence Search (GES), and the Grow-Shrink (GS) algorithm

have had major impact in this area of research. Hybrid algorithms that combine both approaches

also exist and include the Max-Min Hill-Climbing (MMHC) algorithm [14] and the L1-

Regularisation paths [15].

Other score-based approaches that put greater emphasis on pruning the search space of

possible graphs, and some guarantee to return the graph that maximises a scoring function,

include the Integer Programming (IP) methods by Cussens [16] and Cussens et al [17] that are

based on the IP formulation of Bartlett and Cussens [18] and which form part of the GOBNILP

system. Other relevant approaches include the Integer Linear Programming (ILP) bounded tree-

width approach by Parviainen et al [19], the linear program acyclic approach by Jaakkola et al

[20] that reduces search space based on various constraints, the special vector characteristic imset

by Hemmecke et al [21], and the branch-and-bound (BnB) linear programming method by Peharz

and Pernkopf [22] that maximises a discriminative score to offer an exact solution. Moreover,

various dynamic programming methods include those by Silander and Myllymaki [23] that return

the global optimal BN structure more efficiently than earlier methods (albeit restricted to 30

variables), by Koivisto and Sood [24] on exact Bayesian structure discovery, by Ott et al [25] on

optimal structures for small gene networks, and by Singh and Moore [26] on achieving global

maxima with exponential (rather than super-exponential) search space.

Other notable approaches include the A* search-based algorithm by Yuan and Malone

[27] that learns the structure based on the most promising part of the solution space, the frontier

breadth-first BnB search method by Malone et al [28] that improves memory efficiency, the BnB

algorithm by de Campos and Ji [29] that integrates structural constraints with data in a way to

guarantee global optimality, the nonparametric regression approach by Imoto et al [30] to capture

non-linear relationships between genes, and the constraint-based depth-first BnB search method

by van Beek and Hoffmann [31] that reduces the search space using various constraints.

This paper presents the Saiyan algorithm that is based on an associational heuristic with

the unconventional restriction to output a DAG that enables full propagation of evidence. The

paper is structured as follows: Section 2 describes the algorithm, Section 3 presents the results,

and Section 4 provides the concluding remarks and limitations along with directions for future

work.

2 THE SAIYAN ALGORITHM

The Saiyan algorithm is based on a novel associational score that measures the level of difference

between prior and posterior distributions. The algorithm follows a six-phase process to construct a

DAG, with optional temporal and directed constraints, as illustrated in Fig 1. The high-level

reasoning for each of the phases is as follows:

i. Phase 1 generates a graph based on the combined causal effect each pair of variables has

on each remaining third variable. While the above process leads to multiple arcs between

Learning Bayesian Networks with the Saiyan algorithm 39:3

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

nodes, only the arc that maximises a score function (refer to Section 2.1) is preserved for

phase 2.

ii. Phase 2 ensures that model dimensionality is reasonably low relative to the input data. If

a CPT has an expected parameter size greater than the sample size of the data, the

weakest parent of that CPT is pruned until the dimensionality space is deemed

acceptable.

iii. Phase 3 prunes the weakest arc in a cycle until the graph becomes acyclic.

iv. Phase 4 generates a new set of scores that are based on pairwise effect, rather than on the

combined causal effect, and which are considered for further graphical modifications in

subsequent phases.

v. Phase 5 uses the scores from phase 4 to simplify the graph via arc removals and arc

reversals.

vi. Phase 6 connects any independent nodes, or graphical fragments, to enable full

propagation of evidence.

Fig A1 illustrates some of the graphical structures generated at different learning phases of the

Saiyan algorithm. The outputs are based on the results of the Football case study (refer to Section

3.1). The subsections that follow describe the scoring function as well as each of the six phases in

turn.

Fig. 1. The overall process of the Saiyan algorithm.

2.1 The MMD scoring function

The scoring function investigated in this paper is called the Mean/Max/MeanMax Marginal

Discrepancy (MMD). This score can be used to return either the average Mean (MN), average

Max (MX), or average MeanMax (MM) discrepancies between marginal probabilities in prior and

posterior distributions. The preferred type of discrepancy is specified as a parameter input. A

higher discrepancy score between prior and posterior distributions indicates a stronger

dependency.

39:4 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

If we assume discrepancy type MN to compute the score of B being a parent of A, the

output will be the average over i distributional differences of mean marginal discrepancies

between 𝑃(𝐴) and 𝑃(𝐴|𝑏𝑖); i.e., MMD𝑀𝑁(𝐴 ← 𝐵) is

(∑ [(∑|𝑃(𝑎𝑗) − 𝑃(𝑎𝑗|𝑏𝑖)|

 𝑠𝐴

𝑗

) 𝑠𝐴⁄]

𝑠𝐵

𝑖

) 𝑠𝐵⁄ (1)

for each state 𝑎𝑗 in 𝐴 and 𝑏𝑖 in 𝐵, and over 𝑠𝐴 states in 𝐴 and 𝑠𝐵 states in 𝐵. In the case of MX, the

score is simply the average maximum, rather than the average mean, discrepancy between marginal

probabilities. In the case of MM, the score is the average of MN and MX scores.

Consider the hypothetical prior and posterior distributions shown in Table 1. The mean

marginal discrepancy, for example, between 𝑃(𝐴) and 𝑃(𝐴|𝑏1) is 0.025, whereas the maximum

marginal discrepancy is 0.05. Based on these discrepancies, and over all three discrepancy

assessments between 𝑃(𝐴) and 𝑃(𝐴|𝑏𝑖), the three MMD scores are:

MMD𝑀𝑁(𝐴 ← 𝐵) =
(0.025 + 0.05 + 0.15)

3⁄ = 0.075

MMD𝑀𝑋(𝐴 ← 𝐵) =
(0.05 + 0.1 + 0.25)

3⁄ = 0.1333

MMD𝑀𝑀(𝐴 ← 𝐵) =
(0.075 + 0.1333)

2⁄ = 0.1042

Table 1. Hypothetical Prior and Posterior distributions used to illustrate the computation of the three

different types of the MMD score.

 𝑃(𝐴) 𝑃(𝐴|𝑏1) 𝑃(𝐴|𝑏2) 𝑃(𝐴|𝑏3)

𝑎1 0.10 0.05 0.1 0.05

𝑎2 0.25 0.30 0.2 0.40

𝑎3 0.35 0.35 0.3 0.10

𝑎4 0.30 0.30 0.4 0.45

2.2 Phase 1: Combined causal effect search

At phase 1, the algorithm searches over all possible 𝐶 → 𝐴 ← 𝐵 structures to measure the MMD

score each pair of parents {𝐵, 𝐶} has on each residual data variable 𝐴 . For example, the score

MMD𝑀𝑁(𝐶 → 𝐴 ← 𝐵) is

(∑ ∑ [(∑|𝑃(𝐴𝑗) − 𝑃(𝐴𝑗|𝐵𝑖 , 𝐶𝑘)|

𝑠𝐴

𝑗

) 𝑠𝐴⁄]

𝑠𝐵

𝑖

𝑠𝐶

𝑘

) (𝑠𝐵 + 𝑠𝐶)⁄ (2)

The resulting score is assigned to both arcs entering 𝐴, from 𝐵 and 𝐶, as long as the discrepancy

score is greater than the threshold 𝜃 specified by the user; otherwise, the arcs are not drawn.

When this process completes it produces graph 𝐺1𝐴 as shown in Fig 2, which is based on

four hypothetical variables, and shows all arcs (including duplicates) with scores greater than 𝜃. For

example, and with reference to 𝐺1𝐴 in Fig 2, setting 𝜃 to 0.15 would not have drawn the two arcs

entering 𝐴, from 𝐵 and 𝐶, with score 0.121.

Learning Bayesian Networks with the Saiyan algorithm 39:5

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

Graph 𝐺1𝐴 is then revised into 𝐺1𝐵 by eliminating duplicate arcs and preserving the

maximum score over all duplicates. A third revision follows, that produces graph 𝐺1𝐶 from 𝐺1𝐵,

in which bi-directions are eliminated by preserving the direction that maximises MMD , as

illustrated in Fig 2. Algorithm 1 describes this process, with optional code to account for temporal

and directed knowledge-based constraints highlighted in grey.

Fig. 2. The three subphases of phase 1, based on hypothetical data. Red dashed arcs represent arcs

eliminated.

ALGORITHM 1: Phase 1, with optional code for knowledge-based constraints in grey shading.

Input: variables 𝑥, discrepancy threshold 𝜃

Output: graph 𝐺1𝐶

// Produce graph 𝐺1𝐴 in phase 1.

List 𝐿

for each variable 𝑥𝑖 ∈ 𝑥 do

 for each remaining variable 𝑥𝑗 ∈ 𝑥 do

 for each remaining variable 𝑥𝑘 ∈ 𝑥 do

 if 𝑥𝑖 ← 𝑥𝑗 and 𝑥𝑖 ← 𝑥𝑘 satisfy constraints then

 add MMD ቀ𝑃(𝑥𝑖), 𝑃(𝑥𝑖|𝑥𝑗 , 𝑥𝑘)ቁ score 𝑠 in 𝐿 if 𝑠 > 𝜃

 end if

 end for

 end for

end for

// Produce graph 𝐺1𝐵 in phase 1, revised from 𝐺1𝐴.

for each 𝑠 ∈ 𝐿 do

 if 𝑠 relates to an arc that is a directed constraint then

39:6 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

 𝑠 = 1

 end if

 Eliminate duplicate arcs and preserve max(𝑠)

end for

// Produce graph 𝐺1𝐶 in phase 1, revised from 𝐺1𝐵.

for each 𝑠 ∈ 𝐿 do

 Eliminate the bi-directed arc with the lowest 𝑠2

end for

2.3 Phases 2 and 3: Dimensionality and Acyclic

At phase 2, the algorithm determines the maximum number of parents a node can have, as described

in Algorithm 2. The maximum number of parents is determined by CPT size relative to the sample

size of the input data. This process ensures that the expected number of parameters of the average

CPT with 𝑎 parents will not be greater than the sample size of the data. Setting parameter input 𝑐 =
1 represents a more conservative choice where the maximum number of parents further decreases by

1.

Once the maximum number of parents is determined, the algorithm revises 𝐺1𝐶 into 𝐺2 by

pruning the excess parents that violate this restriction, starting from the weakest parent in terms of

MMD score. For a visual example, refer to the first three graphs in Fig A1 where the maximum

number of parents is determined to be 3.

At phase 3, the algorithm searches for cycles in 𝐺2 and breaks them until the graph

becomes acyclic. This is achieved by removing the weakest arc in a cycle, one at a time, as

determined by MMD score. This process is repeated until no cycles exist. The result is graph 𝐺3

(also as shown in Fig A1).

ALGORITHM 2: Determining max parents during phase 2.

Input: user input 𝑐, sample size 𝑛, average states �̅�

Output: 𝑎

𝑎 = 1

threshold = 1

c𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 2

while convergence > threshold do

 convergence = 𝑛
�̅�(𝑎+2)⁄

 if convergence > threshold do

 𝑎 + +

 end if

end while

𝑎 = 𝑎 − 𝑐

2.4 Phases 4 and 5: Pairwise effect search, Reduction and Reversal

As initially shown in Fig 1, phase 4 generates a new set of scores that are based on pairwise rather

than combined causal effect, and these scores are used in subsequent phases to perform further

graphical modifications. In computing the pairwise scores, phase 4 also produces the supplementary

fully connected undirected graph 𝐺4, as shown in the example of Fig A1. If the MMD score is set to

Learning Bayesian Networks with the Saiyan algorithm 39:7

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

type MN, then each undirected edge 𝐴 − 𝐵 in 𝐺4 is assigned the average MMD score of 𝐴 → 𝐵 and

𝐴 ← 𝐵; i.e., MMD𝑀𝑁(𝐴 − 𝐵) is

[MMD𝑀𝑁(𝐴 ← 𝐵) + MMD𝑀𝑁(𝐴 → 𝐵)]

2
⁄ (3)

Phase 5 begins by eliminating edges in the supplementary graph 𝐺4, one by one, starting

from the edge with the lowest score. As described in Algorithm 3, for each edge 𝐴 − 𝐵 eliminated,

if 𝐴 and 𝐵 share neighbour 𝐶 (implying that edges 𝐴 − 𝐶 and 𝐵 − 𝐶 have MMD scores greater than

that of 𝐴 − 𝐵), the ‘reduction’ step is activated. This step checks if the edge eliminated in 𝐺4 exists

in 𝐺3 as an arc and if yes, and assuming the edge eliminated in 𝐺4 is 𝐴 − 𝐵 and the respective arc in

𝐺3 is 𝐴 → 𝐵, then 𝐴 → 𝐵 is not preserved in 𝐺5 as long as:

i. 𝐴 − 𝐵 has MMD < 𝜃. In this case, the arc is eliminated since the pairwise score between

𝐴 and 𝐵 is lower than threshold 𝜃.

ii. 𝐴 and 𝐵 in 𝐺3 share a neighbour 𝐶 that is not a child of 𝐴 and 𝐵. In this case, the arc is

eliminated since the dependency is preserved through 𝐶.

iii. 𝐴 and 𝐵 in 𝐺3 share child 𝐶 . In this case, 𝐴 → 𝐵 is not preserved from 𝐺3 to 𝐺5 , and

further activates the ‘reversal’ step. Specifically, for each 𝐴 → 𝐵 not preserved in 𝐺5, if 𝐴

and 𝐵 share child 𝐶, then 𝐴 → 𝐶 ← 𝐵 is reoriented into 𝐴 → 𝐶 → 𝐵 (or 𝐴 ← 𝐶 ← 𝐵 in the

case of 𝐴 ← 𝐵) as long as the graph remains acyclic and optional knowledge-based

constraints are not violated.

ALGORITHM 3: Phases 4 and 5, with optional knowledge-based constraints in grey shading.

Input: variables 𝑋, discrepancy threshold 𝜃, graph 𝐺3

Output: graphs 𝐺4 and 𝐺5

// Produce graph 𝐺4 in phase 4, independent of 𝐺3.

for each variable 𝑥𝑖 ∈ 𝑋 do

 for each remaining variable 𝑥𝑗 ∈ 𝑋 do

 if 𝑥𝑖 and 𝑥𝑗 are part of a directed constraint then

 add them in 𝐺4 with MMD score 1

 else add them in 𝐺4 with MMD score [MMD ቀ𝑃(𝑥𝑖), 𝑃(𝑥𝑖|𝑥𝑗)ቁ + MMD ቀ𝑃(𝑥𝑗), 𝑃(𝑥𝑗|𝑥𝑖)ቁ] 2⁄

 end if

 end for

end for

// Produce graph 𝐺5 in phase 5, dependent on 𝐺3 and 𝐺4.

while edge 𝑒 ∈ 𝐺4 do

 delete 𝑒𝑖 in 𝐺4 with min(MMD) and get nodes 𝐴 and 𝐵

 if 𝐴 and 𝐵 share a neighbour 𝐶 in 𝐺4 then

 if there is an arc between 𝐴 and 𝐵 in 𝐺3 then

 if 𝑒𝑖 had MMD < 𝜃

 delete arc between 𝐴 and 𝐵 in in 𝐺5

 else if 𝐴 and 𝐵 share a non-child 𝐶 in 𝐺3 then

 delete arc between 𝐴 and 𝐵 in in 𝐺5

 else if 𝐴 and 𝐵 share a child 𝐶 in 𝐺3 then

 delete arc between 𝐴 and 𝐵 in in 𝐺5

39:8 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

 for each 𝐶 do

 if the arc eliminated in 𝐺5 was 𝐴 → 𝐵 then

 if 𝐴 → 𝐶 → 𝐵 do not violate constraints then

 alter 𝐴 → 𝐶 ← 𝐵 to 𝐴 → 𝐶 → 𝐵 if 𝐺5 remains acyclic

 end if

 else

 if 𝐴 ← 𝐶 ← 𝐵 do not violate constraints then

 alter 𝐴 → 𝐶 ← 𝐵 to 𝐴 ← 𝐶 ← 𝐵 if 𝐺5 remains acyclic

 end if

 end if

 end for

 end if

 end if

 end if

end while

2.5 Phase 6: DAG

The final phase ensures that the graph returned to the user is a DAG that enables full propagation

of evidence. It starts by searching for the largest graphical fragment 𝑔5𝑖 in 𝐺5, and then for the

variable 𝑥𝑖 that is not part of 𝑔5𝑖 and which maximises MMD score on a variable 𝑧𝑖 in 𝑔5𝑖. It then

connects 𝑥𝑖 to 𝑧𝑖 with an arc. The direction of the arc is determined based on the number of

parents in 𝑥𝑖 with respect to 𝑧𝑖; i.e., the node with the lowest number of parents is selected as the

child (unless it violates any knowledge-based constraints). This process is repeated until all 𝑥𝑖

become part of 𝑔5𝑖. Algorithm 4 describes this phase.

ALGORITHM 4: Phase 6, with optional knowledge-based constraints in grey shading.

Input: variables 𝑋, graph 𝐺4, graph 𝐺5

Output: graph 𝐺6

// Produce graph 𝐺6 in phase 6, dependent on 𝐺4 and 𝐺5.

Find the largest BN fragment 𝑔5𝑖 ∈ 𝐺5 and get variables 𝑍 of 𝑔5𝑖 .

while size of set 𝑍 <size of set 𝑋 do

 for each 𝑥𝑖 ∉ 𝑍 do

 Search for variable 𝑧𝑖 that maximises 𝑠 on a 𝑥𝑖

 if 𝑥𝑖 has parents ≥ to the number of parents of 𝑧𝑖 then

 if 𝑥𝑖 → 𝑧𝑖 does not violate constraints then

 do 𝑥𝑖 → 𝑧𝑖

 else

 do 𝑧𝑖 → 𝑥𝑖

 end if

 else

 if 𝑧𝑖 → 𝑥𝑖 does not violate constraints then

 do 𝑧𝑖 → 𝑥𝑖

 else

 do 𝑥𝑖 → 𝑧𝑖

 end if

 end if

 end for

end while

Learning Bayesian Networks with the Saiyan algorithm 39:9

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

2.6 Computational and time complexity

Previous relevant studies have based computational complexity on the number of associational tests

between variables, and the number of conditional independence tests [3], [14], [32]. As described in

the previous subsections, the only phases that involve associational tests are phases 1 and 4 which

compute the combined causal and pairwise MMD scores respectively. The remaining phases simply

make use of those MMD scores to modify the graph.

More specifically, the number of associational tests in phase 1 is [𝑥(𝑥 − 1)(𝑥 − 2)] 2⁄ ,

where 𝑥 is the number of variables in the data. In phase 4, the number of associational tests is

𝑥(𝑥 − 1). Therefore, computational complexity is the sum of associational tests over these two

phases; i.e.,

𝑂 (ቀ𝑥(𝑥 − 1)(𝑥 − 2)
2⁄ ቁ + 𝑥(𝑥 − 1))

Due to the exhaustive search performed in phase 1, each increase in 𝑥 results in a non-linear cubic

growth in the number of associational tests. This means that the Saiyan algorithm is not suitable

for datasets that incorporate 1000s of variables, such as those in bioinformatics. Algorithms that

scale linearly with the number of variables are typically more suitable for those problems.

3 EVALUATION AND RESULTS

The evaluation process is based on four case studies (10 datasets, including different sample

sizes), four scoring metrics, and another ten state-of-the-art or well-established structure learning

algorithms.

3.1 Data case studies

Two real-world and two synthetic case studies are considered. The real-world case studies represent

a ‘simple’ and a ‘complex’ test, whereas the synthetic case studies represent a ‘rule-based’ and a

‘knowledge-based’ test. Specifically,

i. Football: A real-world dataset that consists of seven variables and has a sample size of 380.

The data and knowledge-based BN graph are based on a simplified version of the model

presented in [33]. This dataset represents the ‘simple’ real-world test.

ii. Forensic medicine: A real-world dataset that consists of 56 variables and has a sample size

of 953. The data and knowledge-based graph are based on [34]. This dataset represents the

‘complex’ real-world test.

iii. Alarm network: The classic BN model that consists of 37 variables. Data are simulated

based on the knowledge-based structure and parameters specified in the Bayesian Network

Repository with reference to [35]. This dataset represents the ‘knowledge-based’ synthetic

test.

iv. Property market: A rule-based BN model that consists of 27 variables and which had its

structure and parameters determined by clearly defined rules and regulating protocols

associated with the UK property market, as described in [36]. This dataset represents the

‘rule-based’ synthetic test.

It is important to note that for cases i and ii, the algorithms are judged in terms of how well they

predict the knowledge-based graph, which is not necessarily the ground truth graph. For cases iii

39:10 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

and iv, the algorithms are judged in terms of how accurately they reconstruct the hypothetical

ground truth graph.

3.2 Evaluation metrics

Four evaluation metrics are considered that are fully oriented towards graphical discovery. These

are:

i. the classic F1 score which represents the harmonic mean of Precision and Recall; the most

popular metrics used to evaluate BN structure learning algorithms in the literature [37],

ii. the Structural Hamming Distance (SHD) metric that penalises each change required to

transform the discovered graph into the ground truth graph by 1 [14],

iii. the DAG Dissimilarity Metric (DDM) that penalises dissimilarities and rewards similarities

between graphs, with a weighted reward for un/bi-directed edges [37],

iv. the Balanced Scoring Function (BSF) that balances the score proportional to the number of

direct dependencies and independencies in the ground truth graph, by taking into

consideration all of the confusion matrix parameters. A score of 0 represents performance

equivalent to an empty or a fully connected graph, and scores of -1 and 1 represent the

most inaccurate and accurate graphs respectively [37].

Note that, in thus study, all of the four metrics consider the discovery of a correct edge with an

incorrect direction to be a partial match with a 50% reward. For example, if the true arc is 𝐴 → 𝐵

and an algorithm discovers 𝐴 → 𝐵, then the reward will be 1; but the reward will be 0.5 if the

algorithm discovers 𝐴 ↔ 𝐵, 𝐴 − 𝐵, or 𝐴 ← 𝐵 instead (and 0 for no edge). Finally, the evaluation

process assumes that the ground truth graph is a DAG, rather than a PDAG.

3.3 Structure learning algorithms considered

The TETRAD freeware and the bnlearn R Statistical package [38] were used to test the other

algorithms. The graphs generated by the Saiyan algorithm are compared to the graphs generated by

each of the other 10 algorithms when applied to the same data. The other 10 algorithms are:

i. The PC (Peter-Clark) algorithm, which uses conditional independence tests to construct

the network and is perhaps the most well-known constraint-based algorithm [39].

ii. The FCI (Fast Causal Inference) algorithm, that is similar to PC but which accounts for the

possibility of latent confounders [40].

iii. The FGES (Fast Greedy Equivalence Search) algorithm which is a parallelised and an

optimised version of the score-based GES algorithm that was initially developed by Meek

[41] and later further developed by Chickering [12].

iv. The GS (Grow-Shrink Markov Blanket) algorithm which recovers the Markov blanket

based on pairwise independence test [38].

v. The MMPC (Max-Min Parents and Children) constraint-based algorithm that uses forward

selection to discover neighbours based on the maximum and minimum associations

observed in subset nodes during previous iteration [42].

vi. The HC (Hill-Climbing) score-based algorithm that searches the space of directed graphs

using greedy search [43].

vii. The TABU (Tabu Search) scored-based algorithm that is a modified HC version designed

to escape local optima [43].

Learning Bayesian Networks with the Saiyan algorithm 39:11

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

viii. The MMHC (Max-Min Hill-Climbing) hybrid algorithm, which is based on MMPC and

HC algorithms, and is said to outperform several prototypical and state-of-the-art

algorithms [14].

ix. The IAMB (Incremental Association) constraint-based algorithm which is a Markov

blanket detection algorithm using forward selection search [44].

x. The RSMAX2 (Restricted Maximization) hybrid algorithm which is a modified version of

MMHC that uses different combinations of constraint-based and score-based searches [45,

46].

The TETRAD freeware version 6.5.3 was used to run the PC, FCI, and FGES algorithms with their

default parameter inputs, and the bnlearn R Statistical package v4.4 was used to run the GS,

MMPC, HC, TABU, MMHC, IAMB, and RSMAX2 algorithms with their default parameter inputs

[46].

3.4 Results and discussion

The results are based on the four case studies discussed in Section 3.1, and on a total of 10 datasets.

The 10 datasets are the result of dividing each of the two synthetic case studies into four datasets of

different sample size; i.e., 0.1, 1, 10, and 100 thousand samples per dataset per synthetic case.

The Saiyan algorithm is tested over different combinations of parameter input. Specifically,

42 graphs are generated for each dataset, where each of those 42 graphs represents a unique

combination of the following parameters:

i. Three types of MMD score to measure the discrepancy between prior and posterior

distributions; i.e. MN, MX, and MM as defined in Section 2.1.

ii. Seven different discrepancy thresholds 𝜃 , which represent the threshold above which a

relationship is established between variables given the MMD score, as defined in Section 2.2.

The seven thresholds tested are 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, and 0.3.

iii. Two input values for constant 𝑐 (0 or 1), which modifies the maximum number of parents a

node can have as defined in Section 2.3.

Since the evaluation is based on 10 datasets, a total of 100 graphs are generated by the other

algorithms (one graph per dataset per algorithm), and 420 graphs are generated by the Saiyan

algorithm (42 graphs per dataset). Therefore, the results from this evaluation illustrate how the

Saiyan algorithm with unoptimised parameters (i.e., over 42 different parameter inputs) performs

relative to the 10 algorithms with default parameters.

 Figs 3 and 4 present the ranking of the algorithms, as determined by each of the four

metrics, in terms of how well they predict the Football and Forensic medicine knowledge-based

graphs. Two scores are reported for Saiyan; the best and worst scores over the 42 graphs

generated per case study.

39:12 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

Fig. 3. Football case study: Performance of each algorithm as determined by each of the four metrics, in

terms of how well they predict the knowledge-based graph. Algorithms Saiyan [b] and Saiyan [w] represent

the best (highlighted in orange) and worst (highlighted in red) scores respectively, over the 42 parameter

input combinations.

Fig. 4. Forensic medicine case study: Performance of each algorithm as determined by each of the four

metrics, in terms of how well they predict the knowledge-based graph. Algorithms Saiyan [b] and Saiyan [w]

represent the best (highlighted in orange) and worst (highlighted in red) scores respectively, over the 42

parameter input combinations.

Overall, the algorithms have done well in predicting the Football knowledge-based graph, but

not well in predicting the more complex Forensic medicine graph. The same applies to the Saiyan

algorithm. However, not being able to discover a graph that closely approximates the knowledge-

based graph does not imply that the graph discovered is inaccurate. Still, these results suggest that

the algorithms are rather consistent in the graphs they generate; at least in relation to the knowledge-

based graphs.

Interestingly, while the four metrics are generally in agreement when it comes to ranking the

algorithms in the Football case study, they generate conflicting rankings in the Forensic medicine

Learning Bayesian Networks with the Saiyan algorithm 39:13

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

case study. The most staggering example involves the GS algorithm; F1 and BSF metrics place GS

at the bottom of the rankings whereas SHD and DDM metrics place GS at the top of the rankings.

This inconsistency occurs because the GS generates a limited number of edges relative to the other

algorithms (refer to Table 2). The limited number of edges is viewed positively by the SHD and

DDM metrics which approximate classification accuracy and hence, tend to be biased in favour of

empty graphs [37].

Similarly, Figs 5 and 6 rank the synthetic performance of the algorithms for the Property

market and Alarm network case studies respectively. These graphs include the performance scores

over all of the four different data sample sizes. Results of interest include:

i. The TABU algorithm has topped all of the rankings and is closely followed by the similar

HC algorithm.

ii. While the Saiyan algorithm has not topped any of the rankings, its performance is

competitive relative to most of the other algorithms.

iii. The F1 (Recall and Precision) and BSF metrics tend to rank the Saiyan algorithm higher

than the SHD and DDM metrics.

iv. The worst performances of the Saiyan algorithm (i.e., Saiyan [b]) are often at the bottom of

the rankings. This suggests that some of the parameter inputs tested, which are detailed in

Appendix B, are far from being optimal and should be avoided. Tables B1, B2, and B3

suggest that the inputs ‘Mean’, ‘5’, and ‘0’ for respective parameters MMD, 𝜃, and 𝑐,

produce scores that are considerably inferior relative to the scores generated when based on

the remaining parameter inputs tested. According to Table B4, however, even when we

restrict the results to the better performing parameter inputs, it is still unclear which

combination of inputs maximises performance over all cases. It is possible that the optimal

parameters depend on the dimensionality of the data relative to the sample size of the input

data.

v. Increasing the sample size of the input data does not always improve accuracy. This

observation applies to multiple algorithms, and applies to both synthetic case studies.

However, in most cases the difference in scoring performance is rather marginal and may

be due to random variability that arises once an algorithm is provided with enough data

samples.

vi. The results are not entirely consistent with those reported in [14], in which the MMHC

outperforms several prototypical algorithms according to the SHD score, including the PC,

GES, and GS algorithms tested in this paper. The RSMAX2 algorithm, which is a modified

version of MMHC, appears to be on par with MMHC, as expected.

Table 2 presents the number of arcs or edges discovered by each of the algorithms, as well

as the number of independent graphical fragments (i.e., disjoint subgraphs) or variables generated by

each of the algorithms, for each case study. Observations of interest include:

i. The other algorithms will rarely return a graph that enables full propagation of evidence,

despite all of the input variables being dependent.

ii. The number of edges generated by the Saiyan algorithm appear to better approximate the

knowledge-based or true number of edges. For example, in the Forensic medicine case

none of the other algorithms came close to generating 103 edges. Remarkably, the GS

algorithm only discovered 9 edges and yet, the SHD and DDM metrics considered GS to

be the best performing algorithm (refer to Fig 4). This observation serves as further

evidence that simple classification accuracy, which these metrics approximate, can be

39:14 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

misleading. Moreover, five of the other algorithms (GS, MMHC, IAMB, MMPC, and

RSMAX2) also generated a low number of edges relative to the true number of edges, for

both synthetic experiments and irrespective of sample size.

iii. In the Property market case study, the variability in the number of edges discovered is

minor for the Saiyan algorithm (over its 168 graphs), whereas it is much higher for the

other algorithms (over just four graphs; one per sample size). This difference is relaxed in

the Alarm network case. Overall, these results suggest that Saiyan is more consistent in the

number of edges discovered, which is a consequence of the assumption that all of the input

variables are dependent.

iv. While the restriction to enable full propagation of evidence is expected to lead to more

complex graphs, Table 2 suggests that this is often, but not always, the case. For example,

in the Property market case the PC, FCI and FGES algorithms generated a much higher

number of edges across all four sample size cases, compared to the Saiyan’s maximum

number of edges generated across all of the 168 different graphs. This observation,

however, does not extend to the Alarm network case. Moreover, most of the other

algorithms tend to generate simple models with limited edges when the sample size is low.

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

Fig. 5. Property market case study: Performance of each algorithm over different sample sizes, as determined by each of the four metrics, in terms of how well they

predict the hypothetical ground truth rule-based graph. Algorithms Saiyan [b] and Saiyan [w] represent the best (highlighted in orange) and worst (highlighted in red)

scores respectively, over the 42 parameter input combinations, per sample size.

39:2 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

Fig. 6. ALARM network case study: Performance of each algorithm over different sample sizes, as determined by each of the four metrics, in terms of how well they

predict the hypothetical ground truth graph. Algorithms Saiyan [b] and Saiyan [w] represent the best (highlighted in orange) and worst (highlighted in red) scores

respectively, over the 42 parameter input combinations, per sample size.

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

Table 2. The number of edges and independent graphical fragments (or disjoint subgraphs) discovered per

algorithm per case study.

Case Variables
True

arcs
Algorithms Graphs generated Edges discovered

Independent

graphical fragments

Football

7

6

Saiyan 42 6 to 9 1

PC 1 6 1

FCI 1 6 1

FGES 1 6 1

GS 1 3 4

MMHC 1 6 1

IAMB 1 6 1

HC 1 6 1

MMPC 1 6 1

TABU 1 6 1

RSMAX2 1 6 1

Forensic

medicine

56

103

Saiyan 42 55 to 111 1

PC 1 69 7

FCI 1 69 7

FGES 1 76 5

GS 1 9 47

MMHC 1 39 19

IAMB 1 44 17

HC 1 72 4

MMPC 1 43 18

TABU 1 72 4

RSMAX2 1 39 20

Property

market

27

31

Saiyan 168 26 to 29 1

PC 4 13 to 57 3 to 15

FCI 4 13 to 57 3 to 15

FGES 4 16 to 56 1 to 11

GS 4 7 to 20 9 to 20

MMHC 4 5 to 24 8 to 22

IAMB 4 6 to 23 9 to 21

HC 4 15 to 37 1 to 12

MMPC 4 6 to 24 9 to 21

TABU 4 15 to 37 1 to 12

RSMAX2 4 5 to 22 9 to 22

Alarm

network

37

46

Saiyan 168 36 to 57 1

PC 4 21 to 45 2 to 16

FCI 4 21 to 45 2 to 16

FGES 4 30 to 45 2 to 10

GS 4 11 to 26 12 to 26

MMHC 4 13 to 32 7 to 24

IAMB 4 13 to 33 6 to 24

HC 4 31 to 51 2 to 7

MMPC 4 13 to 32 7 to 24

TABU 4 31 to 45 2 to 7

RSMAX2 4 13 to 30 9 to 24

39:2 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

Fig. 7. Overall performance of the Saiyan algorithm (over all 42 input unoptimised combinations) relative to

the overall performance of the other 10 algorithms. The bars illustrate the percentage of the Saiyan’s scores

being inferior, on par, and superior, relative to the respective scores generated by the other 10 algorithms.

4 CONCLUDING REMARKS AND FUTURE WORK

This paper presented a BN structure learning algorithm, called Saiyan, which is based on a novel

scoring function to determine relationships between variables, and follows an unconventional six-

phase associational heuristic approach to generate a DAG that enables full propagation of evidence.

 In guaranteeing full propagation of evidence, Saiyan ‘forces’ the discovery of edges that

would otherwise remain undiscovered, and these additional edges are not expected to be correct at

the rate of those identified unrestrictedly. The assumption that the input variables are dependent is

a practical solution and not a theoretical advancement, which means that the restriction may

negatively impact the evaluation scores. Moreover, Saiyan represents an associational heuristic

that, in theory, is not expected to perform well relative to more sophisticated approaches, such as

those based on constraint-based and score-based learning. Still, the empirical results suggest that

this heuristic is as competitive as the average algorithm evaluated in this study.

The Saiyan algorithm represents an experimental implementation. Planned extensions of

this research will investigate the impact of the assumption to enable full propagation of evidence on

constraint-based and score-based learning. The latest version of the Saiyan algorithm, along with

relevant datasets and Bayesian Network case studies, is available online [47] .

ACKNOWLEDGMENTS

This research was supported by the ERSRC Fellowship project EP/S001646/1 on Bayesian Artificial

Intelligence for Decision Making under Uncertainty, and by The Alan Turing Institute in the UK.

Learning Bayesian Networks with the Saiyan algorithm 39:3

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

APPENDIX A: SAMPLE GRAPHS GENERATED BY SAIYAN

Fig. A.1. Sample graphs generated by the Saiyan algorithm over the different learning phases when applied

to the football case study with parameters inputs MMD = 𝑀𝑒𝑎𝑛, 𝜃 = 0.05, 𝑐 = 0. The maximum number of

parents is determined to be 3. The scores associated with each edge represent the MMD scores for the

particular phase. The red dashed arcs represent arcs eliminated, and the blue dashed arcs represent arcs

reversed.

39:4 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

APPENDIX B: SYNTHETIC PERFORMANCE SAIYAN BASED ON DIFFERENT

PARAMETER INPUTS

Table B.1. Overall synthetic performance over parameters MMD. Worst performances are highlighted in red

and best performances in yellow.

MMD

input
F1 BSF SHD DDM

Mean 0.529 0.444 31.168 -0.364

Max 0.554 0.482 31.133 -0.311

MeanMax 0.556 0.480 30.566 -0.300

Table B.2. Overall synthetic performance over parameters 𝑐. Worst performances are highlighted in red and

best performances in yellow.

𝑐

input
F1 BSF SHD DDM

0 0.531 0.455 32.148 -0.369

1 0.562 0.483 29.763 -0.281

Table B.3. Overall synthetic performance over parameters 𝜃. Worst performances are highlighted in red and

best performances in yellow.

𝜃

input
F1 BSF SHD DDM

5 0.522 0.462 34.448 -0.401

7 0.544 0.4763 31.656 -0.329

10 0.551 0.4758 30.427 -0.303

15 0.559 0.473 28.823 -0.277

20 0.565 0.474 28.083 -0.261

25 0.569 0.473 27.604 -0.251

30 0.576 0.4756 26.875 -0.233

Table B.4. Detailed synthetic performance over each combination of parameters MMD, 𝑐, and 𝜃, excluding

the combinations that led to the worst performances highlighted in Tables B1, B2, and B3. Worst

performances are highlighted in red and best performances in yellow, per sample size.

MMD

input

𝜃

input

Sample

size
F1 BSF SHD DDM

Max 7 0.1k 0.329 0.259 47.000 -0.929

MeanMax 7 0.1k 0.325 0.254 46.625 -0.932

Max 10 0.1k 0.347 0.274 45.125 -0.867

MeanMax 10 0.1k 0.380 0.301 41.875 -0.762

Max 15 0.1k 0.400 0.313 39.375 -0.694

MeanMax 15 0.1k 0.419 0.329 37.625 -0.642

Max 20 0.1k 0.419 0.330 37.875 -0.645

MeanMax 20 0.1k 0.427 0.337 37.125 -0.623

Max 25 0.1k 0.433 0.345 37.125 -0.610

MeanMax 25 0.1k 0.430 0.337 36.625 -0.612

Max 30 0.1k 0.436 0.345 36.625 -0.599

Learning Bayesian Networks with the Saiyan algorithm 39:5

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

MeanMax 30 0.1k 0.435 0.343 36.500 -0.599

Max 7 1k 0.582 0.514 29.500 -0.232

MeanMax 7 1k 0.575 0.510 30.500 -0.257

Max 10 1k 0.587 0.515 28.750 -0.218

MeanMax 10 1k 0.561 0.489 30.750 -0.289

Max 15 1k 0.572 0.494 29.000 -0.253

MeanMax 15 1k 0.537 0.462 31.625 -0.348

Max 20 1k 0.576 0.493 28.750 -0.243

MeanMax 20 1k 0.548 0.464 30.125 -0.315

Max 25 1k 0.574 0.490 28.500 -0.245

MeanMax 25 1k 0.545 0.459 30.000 -0.323

Max 30 1k 0.577 0.491 27.875 -0.237

MeanMax 30 1k 0.569 0.478 27.750 -0.258

Max 7 10k 0.645 0.589 25.000 -0.053

MeanMax 7 10k 0.676 0.607 22.375 0.033

Max 10 10k 0.647 0.592 24.875 -0.048

MeanMax 10 10k 0.666 0.596 23.000 0.006

Max 15 10k 0.668 0.592 22.375 0.009

MeanMax 15 10k 0.660 0.584 22.875 -0.007

Max 20 10k 0.661 0.584 22.625 -0.007

MeanMax 20 10k 0.661 0.561 21.750 -0.012

Max 25 10k 0.666 0.580 21.875 0.004

MeanMax 25 10k 0.642 0.539 22.500 -0.061

Max 30 10k 0.653 0.554 21.875 -0.034

MeanMax 30 10k 0.651 0.546 21.750 -0.039

Max 7 100k 0.657 0.593 24.250 -0.024

MeanMax 7 100k 0.650 0.589 25.125 -0.046

Max 10 100k 0.660 0.597 24.125 -0.016

MeanMax 10 100k 0.656 0.577 23.625 -0.024

Max 15 100k 0.633 0.540 24.000 -0.086

MeanMax 15 100k 0.650 0.557 22.875 -0.040

Max 20 100k 0.645 0.552 23.000 -0.053

MeanMax 20 100k 0.663 0.569 22.000 -0.007

Max 25 100k 0.650 0.548 22.250 -0.042

MeanMax 25 100k 0.656 0.560 22.250 -0.026

Max 30 100k 0.659 0.549 21.250 -0.021

MeanMax 30 100k 0.674 0.564 20.250 0.018

39:6 Anthony C. Constantinou

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

REFERENCES

[1] Judea Pearl, “Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach”, In Proceedings of the 2nd
AAAI Conference on Artificial Intelligence, pp. 133–136, Pittsburgh, Pennsylvania, August 1982. AAAI Press, 1982.

[2] Judea Pearl, “Bayesian Networks: A model of self-activated memory for evidential reasoning”, In Proceedings of the

7th Conference of the Cognitive Science Society, pp. 329–334, 1985.
[3] Peter Spirtes, Clark Glymour and Richard Scheines, Causation, Prediction, and Search: 2nd Edition, The MIT Press,

Cambridge Massachusetts, and London, England, 2000.

[4] Steen A. Andersson, David Madigan and Michael D, “A characterization of Markov equivalence classes for acyclic
digraphs”, Annals of Statistics, vol. 25, pp. 505–541, 1997.

[5] Christopher Meek, “Causal inference and causal explanation with background knowledge”, In Proceedings of the 11th

UAI Conference on Uncertainty in Artificial Intelligence, pp. 403–410, 1995.
[6] Peter Spirtes and Christopher Meek, “Learning Bayesian Networks with discrete variables from data”, In Proceedings

of the 1st Annual Conference on Knowledge Discovery and Data Mining, pp. 294–299, 1995.
[7] David M. Chickering, David Heckerman and Christopher Meek, „Large-sample learning of Bayesian networks is NP-

hard”, Journal of Machine Learning Research, vol. 5, pp. 1287–1330, 2004.

[8] Daphne Koller and Nir Friedman, “Probabilistic Graphical Models”, Cambridge, Massachusetts and London,
England, The MIT Press, 2009.

[9] Gregory F. Cooper and Edward Herskovits, “A Bayesian method for the induction of probabilistic networks from

data”, Machine Learning, vol. 9, pp. 309–347, 1992.
[10] Nir Friedman, Iftach Nachman and Dana Peer, “Learning Bayesian network structure from massive datasets: the

“Sparse Candidate” algorithm”, In Proceedings of the 16th UAI Conference on Uncertainty in Artificial Intelligence,

pp. 206–215, 1999.
[11] Andrew Moore and Weng-Keen Wong, “Optimal Reinsertion: A new search operator for accelerated and more

accurate Bayesian network structure learning”, In Proceedings of the 20th International Conference on Machine

Learning (ICML), pp. 552–559, Washington DC, 2003.
[12] David M. Chickering, “Optimal structure identification with greedy search”, Journal of Machine Learning Research,

vol. 3, pp. 507–554, 2002.

[13] Thomas Verma and Judea Pearl, “Equivalence and synthesis of causal models”, In Proceedings of the 6th UAI
Conference on Uncertainty in Artificial Intelligence, pp. 255–270, 1990.

[14] Ioannis Tsamardinos, Laura E. Brown and Constantin F. Aliferis, “The Max-Min Hill-Climbing Bayesian Network

Structure Learning Algorithm”, Machine Learning, vol. 65, pp. 31–78, 2006.
[15] Mark Schmidt, Alexandru Niculescu-Mizil and Kevin Murphy, “Learning graphical model structure using L1-

regularization paths”, In Proceedings of the National Conference on Artificial Intelligence, pp. 1278–1283, 2007.

[16] James Cussens, “Bayesian network learning with cutting planes”, In Fabio G. Cozman and Avi Pfeffer, editors,
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 153–160. AUAI Press,

2011.

[17] James Cussens, Matti Jarvisalo, Janne H. Korhonen, and Mark Bartlett, “Bayesian Network Structure Learning with
Integer Programming: Polytopes, Facets and Complexity”, In Proceedings of the 26th International Joint Conference

on Artificial Intelligence (IJCAI-17), pp. 4990–4994, 2017.

[18] Mark Bartlett and James Cussens, “Integer linear programming for the Bayesian network structure learning problem”,
Artificial Intelligence, vol. 244, pp. 258–271, 2017.

[19] Pekka Parviainen, Hossein Shahrabi Farahani, and Jens Lagergren, “Learning Bounded Tree-width Bayesian

Networks using Integer Linear Programming”, In Proceedings of the 17th International Conderence on AI and
Statistics (AISTATS 2014), pp. 751–759.

[20] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila, “Learning Bayesian Network structure using LP

relaxations”, In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS

2010), pp. 358–365, 2010.

[21] Raymond Hemmecke, Silvia Lindner, and Milan Studeny, “Characteristic imsets for learning Bayesian network

structure”, International Journal of Approcimate Reasoning, vol. 53, iss. 9, pp. 1336–1349.
[22] Robert Peharz and Franz Pernkopf, “Exact maximum margin structure learning of Bayesian networks”, In

Proceedings of the 29th International Conference on Machine Learning (ICML 2012), Edinburgh, Scotland, UK,

2012.
[23] Tomi Silander and Petri Myllymaki, “A simple approach for finding the globally optimal Bayesian Network

structure”, In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI 2006), AUAI Press,

2006.
[24] Mikko Koivisto and Kismat Sood, “Exact Bayesian Structure Discovery in Bayesian Networks”, Journal of Machine

Learning Research, vol. 5, pp. 549–573, 2004.

[25] Sascha Ott, Seiya Imoto, and Satoru Miyano, “Finding Optimal Models for Small Gene Networks”, In Pacific
Symposium in Biocomputing, pp. 557–567, 2004.

[26] Ajit P. Singh and Andrew W. Moore, “Finding Optimal Bayesian Networks by Dynamic Programming”, Technical

Report, CMU-CALD-05-106, Carnegie Mellon University, 2005.
[27] Changhe Yuan and Brandon Malone, “Learning optimal Bayesian Networks: A shortest path perspective”, Journal of

Artificial Intelligence Research, vol. 48, pp23–65, 2013.

Learning Bayesian Networks with the Saiyan algorithm 39:7

ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020.

[28] Brandon Malone, Changhe Yuan, Eric A. Hansen, and Susan Bridges, “Improving the Scalability of Optimal Bayesian

Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search”, In Proceedings of the
27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 479–488, 2011.

[29] Cassio de Campos and Qiang Ji, “Efficient Structure Learning of Bayesian Networks using Constraints”, Journal of

Machine Learning Research, vol. 12, pp. 663–689, 2011.
[30] Seiya Imoto, Takao Goto, and Satoru Miyano, “Estimation of genetic networks and dunctional structures between

genes by using Bayesian Networks and nonparametric regression”, In Pacific Symposium on Biocomputing, pp. 175-

186, 2001.
[31] Peter van Beek and Hella-Franziska Hoffmann, “Machine learning of Bayesian networks using constraint

programming”, In Gilles Pesant, editor, Proceedings of the 21st International Conference on Principles and Practice

of Constraint Programming (CP 2015), vol. 9255 of Lecture Notes in Computer Science, pp. 429–445, 2015.
[32] Dimitris Margaritis and Sebastian Thrun, “Bayesian network induction vial local neighborhoods”, In Advances in

Neural Information Processing Systems 12 (NIPS), pp. 505–512, 1999.

[33] Anthony C. Constantinou. “Asian handicap football betting with rating-based hybrid Bayesian networks”.
arXiv:2003.09384 [stat.AP], 2019.

[34] Anthony C. Constantinou, Mark Freestone, William Marsh, Norman Fenton, and Jeremy Coid, “Risk assessment and
risk management of violent reoffending among prisoners”, Expert Systems with Applications, vol. 42, no. 21, pp.

7511–7529, 2015.

[35] Ingo A. Beinlich, Jaap Suermondt, Martin Chavez, and Gregory F. Cooper, „The ALARM monitoring system: A case
study with two probabilistic inference techniques for belief networks“, In Proceedings of the 2nd European

Conference on Artificial Intelligence and Medicine, Berlin, Germany, 1989.

[36] Anthony C. Constantinou and Norman Fenton, “The future of the London Buy-To-Let property market: Simulation
with Temporal Bayesian Networks”, PlOS ONE, vol. 12, no. 6, e0179297, 2017.

[37] Anthony C. Constantinou, “Evaluating structure learning algorithms with a balanced scoring function”, arXiv:

1905.12666, 2019.
[38] Marco Scutari, “Learning Bayesian Networks with the bnlearn R Package”, Journal of Statistical Software, vol. 35,

no. 3, pp. 1–22.

[39] Peter Spirtes and Clark Glymour, “An algorithm for fast recovery of sparse causal graphs”, Social Science Computer
Review, vol. 9, no. 1, 1991.

[40] Peter Spirtes, Christopher Meek, and Thomas Richardson, “An algorithm for causal inference in the presence of latent

variables and selection bias”, In Clark Glymour and Gregory Cooper (Eds.), Computation, Causation, and Discovery.

The MIT Press, Cambridge, MA, pp. 211–252, 1999.

[41] Christopher Meek, “Graphical Models: Selecting causal and statistical models”, PhD dissertation, Carnegie Mellon

University, 1997.
[42] Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander Statnikov, “Time and Sample Efficient Discovery of

Markov Blankets and Direct Causal Relations”, In Proceedings of the Ninth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 673–678, 2003.
[43] Stuart Russell and Peter Norvig, “Artificial Intelligence: A Modern Approach”, Prentice Hall, 3rd Edition, 2009.

[44] Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander Statnikov, “Algorithms for Large Scale Markov Blanket

Discovery”, In Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference,
pp. 376–381, 2003.

[45] Maxime Gasse, Alex Aussem, and Haytham Elghazel, “A hybrid algorithm for Bayesian network structure learning

with application to multi-label learning”, Expert Systems with Applications, vol. 41, no. 15, pp. 6755–6772, 2014.
[46] Marco Scutari and Jean-Baptiste Denis, Bayesian Networks: With examples in R, CRC Press, 2014.

[47] Anthony C. Constantinou. “The Bayesys user manual”. Queen Mary University of London, London, UK. [Online]

Available at http://bayesian-ai.eecs.qmul.ac.uk/bayesys/ or http://www.bayesys.com

Received xxxx; revised xxxx; accepted xxxx 2020

