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Some structure learning algorithms have proven to be effective in reconstructing hypothetical Bayesian 

Network (BN) graphs from synthetic data. However, in their mission to maximise a scoring function, many 

become conservative and minimise edges discovered. While simplicity is desired, the output is often a graph 

that consists of multiple independent subgraphs that do not enable full propagation of evidence. While this is 

not a problem in theory, it can be a problem in practice. This paper examines a novel unconventional 

associational heuristic called Saiyan, which returns a directed acyclic graph that enables full propagation of 

evidence. Associational heuristics are not expected to perform well relative to sophisticated constraint-based 

and score-based learning approaches. Moreover, forcing the algorithm to connect all data variables implies 

that the forced edges will not be correct at the rate of those identified unrestrictedly. Still, synthetic and real-

world experiments suggest that such a heuristic can be competitive relative to some of the well-established 

constraint-based, score-based, and hybrid learning algorithms. 
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1 INTRODUCTION 

A Bayesian Network (BN) is a type of a probabilistic graphical model introduced by Pearl [1], 

[2]. If we assume that the arcs between nodes in a BN model represent causation, then a BN is a 

unique Directed Acyclic Graph (DAG) that enables us to reason about intervention. However, if 

we assume that the arcs between nodes represent some dependency that is not necessarily a causal 

relationship, then a BN is a Partial Directed Acyclic Graph (PDAG) and hence, not a causal 

graph. A PDAG, also called patterns by Spirtes et al [3], essential graphs by Anderson et al [4], 

and maximally oriented graphs by Meek [5], incorporates both directed and undirected edges and 

represents an equivalence class of DAGs [6]. 

Constructing BNs typically involves two steps: a) determining the graphical structure of 

the model that captures the relationships between variables, and b) parameterising the Conditional 

Probability Tables (CPTs) to capture the relationship between variables. The graph of a BN can 

be determined by knowledge, learned from data, or a combination of both. In this paper we are 

interested in learning BN graphs from observational data, which is a particularly challenging and, 

depending on the number of variables, an NP-Hard problem [7], [8]. 
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The algorithms that learn the graphical structure of a BN typically fall under two 

categories. First, the score-based methods represent a classic machine learning approach where 

algorithms search for different structures and score them, in terms of how well the fitting 

distributions agree with the empirical distributions, determined by a scoring function. The graph 

with the highest score is returned as the preferred graph. Popular score-based algorithms include 

the K2 [9], Sparse Candidate [10], Optimal Reinsertion [11], and the GES algorithm [12]. 

Second, the constraint-based methods use conditional independence tests to establish 

edges between variables, often under causal or influential assumptions. This learning process was 

inherited from the Inductive Causation (IC) algorithm [13]. The Peter Clark (PC) algorithm [3], 

some variants of the Greedy Equivalence Search (GES), and the Grow-Shrink (GS) algorithm 

have had major impact in this area of research. Hybrid algorithms that combine both approaches 

also exist and include the Max-Min Hill-Climbing (MMHC) algorithm [14] and the L1-

Regularisation paths [15]. 

Other score-based approaches that put greater emphasis on pruning the search space of 

possible graphs, and some guarantee to return the graph that maximises a scoring function, 

include the Integer Programming (IP) methods by Cussens [16] and Cussens et al [17] that are 

based on the IP formulation of Bartlett and Cussens [18] and which form part of the GOBNILP 

system. Other relevant approaches include the Integer Linear Programming (ILP) bounded tree-

width approach by Parviainen et al [19], the linear program acyclic approach by Jaakkola et al 

[20] that reduces search space based on various constraints, the special vector characteristic imset 

by Hemmecke et al [21], and the branch-and-bound (BnB) linear programming method by Peharz 

and Pernkopf [22] that maximises a discriminative score to offer an exact solution. Moreover, 

various dynamic programming methods include those by Silander and Myllymaki [23] that return 

the global optimal BN structure more efficiently than earlier methods (albeit restricted to 30 

variables), by Koivisto and Sood [24] on exact Bayesian structure discovery, by Ott et al [25] on 

optimal structures for small gene networks, and by Singh and Moore [26] on achieving global 

maxima with exponential (rather than super-exponential) search space.  

Other notable approaches include the A* search-based algorithm by Yuan and Malone 

[27] that learns the structure based on the most promising part of the solution space, the frontier 

breadth-first BnB search method by Malone et al [28] that improves memory efficiency, the BnB 

algorithm by de Campos and Ji [29] that integrates structural constraints with data in a way to 

guarantee global optimality, the nonparametric regression approach by Imoto et al [30] to capture 

non-linear relationships between genes, and the constraint-based depth-first BnB search method 

by van Beek and Hoffmann [31] that reduces the search space using various constraints. 

This paper presents the Saiyan algorithm that is based on an associational heuristic with 

the unconventional restriction to output a DAG that enables full propagation of evidence. The 

paper is structured as follows: Section 2 describes the algorithm, Section 3 presents the results, 

and Section 4 provides the concluding remarks and limitations along with directions for future 

work.  

2 THE SAIYAN ALGORITHM 

 

The Saiyan algorithm is based on a novel associational score that measures the level of difference 

between prior and posterior distributions. The algorithm follows a six-phase process to construct a 

DAG, with optional temporal and directed constraints, as illustrated in Fig 1. The high-level 

reasoning for each of the phases is as follows: 

 

i. Phase 1 generates a graph based on the combined causal effect each pair of variables has 

on each remaining third variable. While the above process leads to multiple arcs between 
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nodes, only the arc that maximises a score function (refer to Section 2.1) is preserved for 

phase 2. 

ii. Phase 2 ensures that model dimensionality is reasonably low relative to the input data. If 

a CPT has an expected parameter size greater than the sample size of the data, the 

weakest parent of that CPT is pruned until the dimensionality space is deemed 

acceptable. 

iii. Phase 3 prunes the weakest arc in a cycle until the graph becomes acyclic. 

iv. Phase 4 generates a new set of scores that are based on pairwise effect, rather than on the 

combined causal effect, and which are considered for further graphical modifications in 

subsequent phases. 

v. Phase 5 uses the scores from phase 4 to simplify the graph via arc removals and arc 

reversals. 

vi. Phase 6 connects any independent nodes, or graphical fragments, to enable full 

propagation of evidence. 

 

Fig A1 illustrates some of the graphical structures generated at different learning phases of the 

Saiyan algorithm. The outputs are based on the results of the Football case study (refer to Section 

3.1). The subsections that follow describe the scoring function as well as each of the six phases in 

turn. 

 

 

Fig. 1. The overall process of the Saiyan algorithm. 

2.1 The MMD scoring function 

 

The scoring function investigated in this paper is called the Mean/Max/MeanMax Marginal 

Discrepancy (MMD). This score can be used to return either the average Mean (MN), average 

Max (MX), or average MeanMax (MM) discrepancies between marginal probabilities in prior and 

posterior distributions. The preferred type of discrepancy is specified as a parameter input. A 

higher discrepancy score between prior and posterior distributions indicates a stronger 

dependency.  
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If we assume discrepancy type MN to compute the score of B being a parent of A, the 

output will be the average over i distributional differences of mean marginal discrepancies 

between 𝑃(𝐴) and 𝑃(𝐴|𝑏𝑖); i.e., MMD𝑀𝑁(𝐴 ← 𝐵) is 

 

(∑ [(∑|𝑃(𝑎𝑗) − 𝑃(𝑎𝑗|𝑏𝑖)|

 𝑠𝐴

𝑗

) 𝑠𝐴⁄ ]

𝑠𝐵

𝑖

) 𝑠𝐵⁄  (1) 

 

for each state 𝑎𝑗 in 𝐴 and 𝑏𝑖 in 𝐵, and over 𝑠𝐴 states in 𝐴 and 𝑠𝐵 states in 𝐵. In the case of MX, the 

score is simply the average maximum, rather than the average mean, discrepancy between marginal 

probabilities. In the case of MM, the score is the average of MN and MX scores. 

Consider the hypothetical prior and posterior distributions shown in Table 1. The mean 

marginal discrepancy, for example, between 𝑃(𝐴) and 𝑃(𝐴|𝑏1) is 0.025, whereas the maximum 

marginal discrepancy is 0.05. Based on these discrepancies, and over all three discrepancy 

assessments between 𝑃(𝐴) and 𝑃(𝐴|𝑏𝑖), the three MMD scores are: 

 

MMD𝑀𝑁(𝐴 ← 𝐵) =
(0.025 + 0.05 + 0.15)

3⁄ = 0.075 

 

MMD𝑀𝑋(𝐴 ← 𝐵) =
(0.05 + 0.1 + 0.25)

3⁄ = 0.1333 

 

MMD𝑀𝑀(𝐴 ← 𝐵) =
(0.075 + 0.1333)

2⁄ = 0.1042 

Table 1. Hypothetical Prior and Posterior distributions used to illustrate the computation of the three 

different types of the MMD score. 

 𝑃(𝐴) 𝑃(𝐴|𝑏1) 𝑃(𝐴|𝑏2) 𝑃(𝐴|𝑏3) 

𝑎1 0.10 0.05 0.1 0.05 

𝑎2 0.25 0.30 0.2 0.40 

𝑎3 0.35 0.35 0.3 0.10 

𝑎4 0.30 0.30 0.4 0.45 

2.2  Phase 1: Combined causal effect search 

At phase 1, the algorithm searches over all possible 𝐶 → 𝐴 ← 𝐵 structures to measure the MMD 

score each pair of parents {𝐵, 𝐶} has on each residual data variable 𝐴 . For example, the score 

MMD𝑀𝑁(𝐶 → 𝐴 ← 𝐵 ) is 

 

(∑ ∑ [(∑|𝑃(𝐴𝑗) − 𝑃(𝐴𝑗|𝐵𝑖 , 𝐶𝑘)|

𝑠𝐴

𝑗

) 𝑠𝐴⁄ ]

𝑠𝐵

𝑖

𝑠𝐶

𝑘

) (𝑠𝐵 + 𝑠𝐶)⁄ (2) 

 

The resulting score is assigned to both arcs entering 𝐴, from 𝐵 and 𝐶, as long as the discrepancy 

score is greater than the threshold 𝜃 specified by the user; otherwise, the arcs are not drawn. 

When this process completes it produces graph 𝐺1𝐴  as shown in Fig 2, which is based on 

four hypothetical variables, and shows all arcs (including duplicates) with scores greater than 𝜃. For 

example, and with reference to 𝐺1𝐴 in Fig 2, setting 𝜃 to 0.15 would not have drawn the two arcs 

entering 𝐴, from 𝐵 and 𝐶, with score 0.121. 
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Graph 𝐺1𝐴  is then revised into 𝐺1𝐵  by eliminating duplicate arcs and preserving the 

maximum score over all duplicates. A third revision follows, that produces graph 𝐺1𝐶 from 𝐺1𝐵, 

in which bi-directions are eliminated by preserving the direction that maximises MMD , as 

illustrated in Fig 2. Algorithm 1 describes this process, with optional code to account for temporal 

and directed knowledge-based constraints highlighted in grey. 

 

 

Fig. 2. The three subphases of phase 1, based on hypothetical data. Red dashed arcs represent arcs 

eliminated. 

ALGORITHM 1: Phase 1, with optional code for knowledge-based constraints in grey shading. 

Input: variables 𝑥, discrepancy threshold 𝜃 

Output: graph 𝐺1𝐶  

 

// Produce graph 𝐺1𝐴 in phase 1. 

List 𝐿 

for each variable 𝑥𝑖 ∈ 𝑥 do 

    for each remaining variable 𝑥𝑗  ∈ 𝑥 do 

        for each remaining variable 𝑥𝑘 ∈ 𝑥 do 

            if  𝑥𝑖 ← 𝑥𝑗  and 𝑥𝑖 ← 𝑥𝑘 satisfy constraints then 

                add MMD ቀ𝑃(𝑥𝑖), 𝑃(𝑥𝑖|𝑥𝑗 , 𝑥𝑘)ቁ score 𝑠 in 𝐿 if 𝑠 >  𝜃 

            end if 

        end for 

    end for 

end for 

 

// Produce graph 𝐺1𝐵 in phase 1, revised from 𝐺1𝐴. 

for each 𝑠 ∈ 𝐿 do 

    if 𝑠 relates to an arc that is a directed constraint then 
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        𝑠 = 1 

    end if 

    Eliminate duplicate arcs and preserve max(𝑠) 

end for 

 

// Produce graph 𝐺1𝐶  in phase 1, revised from 𝐺1𝐵. 

for each 𝑠 ∈ 𝐿 do 

 Eliminate the bi-directed arc with the lowest 𝑠2 

end for 

2.3  Phases 2 and 3: Dimensionality and Acyclic 

At phase 2, the algorithm determines the maximum number of parents a node can have, as described 

in Algorithm 2. The maximum number of parents is determined by CPT size relative to the sample 

size of the input data. This process ensures that the expected number of parameters of the average 

CPT with 𝑎 parents will not be greater than the sample size of the data. Setting parameter input 𝑐 =
1 represents a more conservative choice where the maximum number of parents further decreases by 

1. 

Once the maximum number of parents is determined, the algorithm revises 𝐺1𝐶 into 𝐺2 by 

pruning the excess parents that violate this restriction, starting from the weakest parent in terms of 

MMD score. For a visual example, refer to the first three graphs in Fig A1 where the maximum 

number of parents is determined to be 3. 

At phase 3, the algorithm searches for cycles in 𝐺2  and breaks them until the graph 

becomes acyclic. This is achieved by removing the weakest arc in a cycle, one at a time, as 

determined by MMD score. This process is repeated until no cycles exist. The result is graph 𝐺3 

(also as shown in Fig A1). 

 

ALGORITHM 2: Determining max parents during phase 2. 

Input: user input 𝑐, sample size 𝑛, average states �̅� 

Output: 𝑎 

 

𝑎 = 1 

threshold = 1     

c𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 2    

while convergence > threshold do 

    convergence = 𝑛
�̅�(𝑎+2)⁄  

    if convergence > threshold do 

        𝑎 + + 

    end if 

end while 

𝑎 = 𝑎 − 𝑐 

2.4  Phases 4 and 5: Pairwise effect search, Reduction and Reversal 

As initially shown in Fig 1, phase 4 generates a new set of scores that are based on pairwise rather 

than combined causal effect, and these scores are used in subsequent phases to perform further 

graphical modifications. In computing the pairwise scores, phase 4 also produces the supplementary 

fully connected undirected graph 𝐺4, as shown in the example of Fig A1. If the MMD score is set to 
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type MN, then each undirected edge 𝐴 − 𝐵 in 𝐺4 is assigned the average MMD score of 𝐴 → 𝐵 and 

𝐴 ← 𝐵; i.e., MMD𝑀𝑁(𝐴 − 𝐵) is 

 
[MMD𝑀𝑁(𝐴 ← 𝐵) + MMD𝑀𝑁(𝐴 → 𝐵)]

2
⁄  (3) 

 

Phase 5 begins by eliminating edges in the supplementary graph 𝐺4, one by one, starting 

from the edge with the lowest score. As described in Algorithm 3, for each edge 𝐴 − 𝐵 eliminated, 

if 𝐴 and 𝐵 share neighbour 𝐶 (implying that edges 𝐴 − 𝐶 and 𝐵 − 𝐶 have MMD scores greater than 

that of 𝐴 − 𝐵), the ‘reduction’ step is activated. This step checks if the edge eliminated in 𝐺4 exists 

in 𝐺3 as an arc and if yes, and assuming the edge eliminated in 𝐺4 is 𝐴 − 𝐵 and the respective arc in 

𝐺3 is 𝐴 → 𝐵, then 𝐴 → 𝐵 is not preserved in 𝐺5 as long as: 

 

i. 𝐴 − 𝐵 has MMD < 𝜃. In this case, the arc is eliminated since the pairwise score between 

𝐴 and 𝐵 is lower than threshold 𝜃. 

ii. 𝐴 and 𝐵 in 𝐺3 share a neighbour 𝐶 that is not a child of 𝐴 and 𝐵. In this case, the arc is 

eliminated since the dependency is preserved through 𝐶. 

iii. 𝐴  and 𝐵  in 𝐺3  share child 𝐶 . In this case, 𝐴 → 𝐵  is not preserved from 𝐺3  to 𝐺5 , and 

further activates the ‘reversal’ step. Specifically, for each 𝐴 → 𝐵 not preserved in 𝐺5, if 𝐴 

and 𝐵 share child 𝐶, then 𝐴 → 𝐶 ← 𝐵 is reoriented into 𝐴 → 𝐶 → 𝐵 (or 𝐴 ← 𝐶 ← 𝐵 in the 

case of 𝐴 ← 𝐵 ) as long as the graph remains acyclic and optional knowledge-based 

constraints are not violated. 

 

ALGORITHM 3: Phases 4 and 5, with optional knowledge-based constraints in grey shading. 

Input: variables 𝑋, discrepancy threshold 𝜃, graph 𝐺3  

Output: graphs 𝐺4 and 𝐺5 

 

// Produce graph 𝐺4 in phase 4, independent of 𝐺3. 

for each variable 𝑥𝑖 ∈ 𝑋 do 

    for each remaining variable 𝑥𝑗  ∈ 𝑋 do 

        if 𝑥𝑖 and 𝑥𝑗  are part of a directed constraint then 

            add them in 𝐺4 with MMD score 1 

        else add them in 𝐺4 with MMD score [MMD ቀ𝑃(𝑥𝑖), 𝑃(𝑥𝑖|𝑥𝑗)ቁ + MMD ቀ𝑃(𝑥𝑗), 𝑃(𝑥𝑗|𝑥𝑖)ቁ] 2⁄  

        end if 

    end for 

end for 

 

// Produce graph 𝐺5 in phase 5, dependent on 𝐺3 and 𝐺4. 

while edge 𝑒 ∈ 𝐺4 do 

    delete 𝑒𝑖 in 𝐺4 with min(MMD) and get nodes 𝐴 and 𝐵 

    if 𝐴 and 𝐵 share a neighbour 𝐶 in 𝐺4 then 

        if there is an arc between 𝐴 and 𝐵 in 𝐺3 then 

            if 𝑒𝑖 had MMD <  𝜃 

                delete arc between 𝐴 and 𝐵 in in 𝐺5 

            else if 𝐴 and 𝐵 share a non-child 𝐶 in 𝐺3 then     

                delete arc between 𝐴 and 𝐵 in in 𝐺5 

            else if 𝐴 and 𝐵 share a child 𝐶 in 𝐺3 then     

                delete arc between 𝐴 and 𝐵 in in 𝐺5      
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                for each 𝐶 do 

                    if the arc eliminated in 𝐺5 was 𝐴 → 𝐵 then 

                        if 𝐴 → 𝐶 → 𝐵 do not violate constraints then 

                            alter 𝐴 → 𝐶 ← 𝐵 to 𝐴 → 𝐶 → 𝐵 if 𝐺5 remains acyclic 

                        end if 

                    else 

                        if 𝐴 ← 𝐶 ← 𝐵 do not violate constraints then 

                            alter 𝐴 → 𝐶 ← 𝐵 to 𝐴 ← 𝐶 ← 𝐵 if 𝐺5 remains acyclic 

                        end if 

                    end if 

                end for 

            end if 

        end if 

    end if 

end while 

2.5  Phase 6: DAG 

The final phase ensures that the graph returned to the user is a DAG that enables full propagation 

of evidence. It starts by searching for the largest graphical fragment 𝑔5𝑖 in 𝐺5, and then for the 

variable 𝑥𝑖 that is not part of 𝑔5𝑖 and which maximises MMD score on a variable 𝑧𝑖 in 𝑔5𝑖. It then 

connects 𝑥𝑖  to 𝑧𝑖  with an arc. The direction of the arc is determined based on the number of 

parents in 𝑥𝑖 with respect to 𝑧𝑖; i.e., the node with the lowest number of parents is selected as the 

child (unless it violates any knowledge-based constraints). This process is repeated until all 𝑥𝑖 

become part of 𝑔5𝑖. Algorithm 4 describes this phase. 

 

ALGORITHM 4: Phase 6, with optional knowledge-based constraints in grey shading. 

Input: variables 𝑋, graph 𝐺4, graph 𝐺5 

Output: graph 𝐺6 

 

// Produce graph 𝐺6 in phase 6, dependent on 𝐺4 and 𝐺5. 

Find the largest BN fragment 𝑔5𝑖 ∈ 𝐺5 and get variables 𝑍 of 𝑔5𝑖 . 

while size of set 𝑍 <size of set 𝑋 do 

    for each 𝑥𝑖 ∉ 𝑍 do 

        Search for variable 𝑧𝑖 that maximises 𝑠 on a 𝑥𝑖 

        if 𝑥𝑖 has parents ≥ to the number of parents of 𝑧𝑖 then 

            if 𝑥𝑖 → 𝑧𝑖  does not violate constraints then 

                do 𝑥𝑖 → 𝑧𝑖  

            else 

                do 𝑧𝑖 → 𝑥𝑖 

            end if 

        else 

            if 𝑧𝑖 → 𝑥𝑖  does not violate constraints then 

                do 𝑧𝑖 → 𝑥𝑖 

            else 

                do 𝑥𝑖 → 𝑧𝑖  

            end if 

        end if 

    end for 

end while 
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2.6 Computational and time complexity 

Previous relevant studies have based computational complexity on the number of associational tests 

between variables, and the number of conditional independence tests [3], [14], [32]. As described in 

the previous subsections, the only phases that involve associational tests are phases 1 and 4 which 

compute the combined causal and pairwise MMD scores respectively. The remaining phases simply 

make use of those MMD scores to modify the graph. 

More specifically, the number of associational tests in phase 1 is [𝑥(𝑥 − 1)(𝑥 − 2)] 2⁄ , 

where 𝑥 is the number of variables in the data. In phase 4, the number of associational tests is 

𝑥(𝑥 − 1). Therefore, computational complexity is the sum of associational tests over these two 

phases; i.e., 

 

𝑂 (ቀ𝑥(𝑥 − 1)(𝑥 − 2)
2⁄ ቁ + 𝑥(𝑥 − 1)) 

 

Due to the exhaustive search performed in phase 1, each increase in 𝑥 results in a non-linear cubic 

growth in the number of associational tests. This means that the Saiyan algorithm is not suitable 

for datasets that incorporate 1000s of variables, such as those in bioinformatics. Algorithms that 

scale linearly with the number of variables are typically more suitable for those problems. 

3 EVALUATION AND RESULTS 

The evaluation process is based on four case studies (10 datasets, including different sample 

sizes), four scoring metrics, and another ten state-of-the-art or well-established structure learning 

algorithms. 

3.1 Data case studies 

Two real-world and two synthetic case studies are considered. The real-world case studies represent 

a ‘simple’ and a ‘complex’ test, whereas the synthetic case studies represent a ‘rule-based’ and a 

‘knowledge-based’ test. Specifically, 

 

i. Football: A real-world dataset that consists of seven variables and has a sample size of 380. 

The data and knowledge-based BN graph are based on a simplified version of the model 

presented in [33]. This dataset represents the ‘simple’ real-world test. 

ii. Forensic medicine: A real-world dataset that consists of 56 variables and has a sample size 

of 953. The data and knowledge-based graph are based on [34]. This dataset represents the 

‘complex’ real-world test. 

iii. Alarm network: The classic BN model that consists of 37 variables. Data are simulated 

based on the knowledge-based structure and parameters specified in the Bayesian Network 

Repository with reference to [35]. This dataset represents the ‘knowledge-based’ synthetic 

test. 

iv. Property market: A rule-based BN model that consists of 27 variables and which had its 

structure and parameters determined by clearly defined rules and regulating protocols 

associated with the UK property market, as described in [36]. This dataset represents the 

‘rule-based’ synthetic test. 

 

It is important to note that for cases i and ii, the algorithms are judged in terms of how well they 

predict the knowledge-based graph, which is not necessarily the ground truth graph. For cases iii 
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and iv, the algorithms are judged in terms of how accurately they reconstruct the hypothetical 

ground truth graph. 

3.2 Evaluation metrics 

Four evaluation metrics are considered that are fully oriented towards graphical discovery. These 

are: 

 

i. the classic F1 score which represents the harmonic mean of Precision and Recall; the most 

popular metrics used to evaluate BN structure learning algorithms in the literature [37], 

ii. the Structural Hamming Distance (SHD) metric that penalises each change required to 

transform the discovered graph into the ground truth graph by 1 [14], 

iii. the DAG Dissimilarity Metric (DDM) that penalises dissimilarities and rewards similarities 

between graphs, with a weighted reward for un/bi-directed edges [37], 

iv. the Balanced Scoring Function (BSF) that balances the score proportional to the number of 

direct dependencies and independencies in the ground truth graph, by taking into 

consideration all of the confusion matrix parameters. A score of 0 represents performance 

equivalent to an empty or a fully connected graph, and scores of -1 and 1 represent the 

most inaccurate and accurate graphs respectively [37]. 

 

Note that, in thus study, all of the four metrics consider the discovery of a correct edge with an 

incorrect direction to be a partial match with a 50% reward. For example, if the true arc is 𝐴 → 𝐵 

and an algorithm discovers 𝐴 → 𝐵, then the reward will be 1; but the reward will be 0.5 if the 

algorithm discovers 𝐴 ↔ 𝐵, 𝐴 − 𝐵, or 𝐴 ← 𝐵 instead (and 0 for no edge). Finally, the evaluation 

process assumes that the ground truth graph is a DAG, rather than a PDAG. 

3.3 Structure learning algorithms considered 

The TETRAD freeware and the bnlearn R Statistical package [38] were used to test the other 

algorithms. The graphs generated by the Saiyan algorithm are compared to the graphs generated by 

each of the other 10 algorithms when applied to the same data. The other 10 algorithms are: 

 

i. The PC (Peter-Clark) algorithm, which uses conditional independence tests to construct 

the network and is perhaps the most well-known constraint-based algorithm [39]. 

ii. The FCI (Fast Causal Inference) algorithm, that is similar to PC but which accounts for the 

possibility of latent confounders [40]. 

iii. The FGES (Fast Greedy Equivalence Search) algorithm which is a parallelised and an 

optimised version of the score-based GES algorithm that was initially developed by Meek 

[41] and later further developed by Chickering [12]. 

iv. The GS (Grow-Shrink Markov Blanket) algorithm which recovers the Markov blanket 

based on pairwise independence test [38]. 

v. The MMPC (Max-Min Parents and Children) constraint-based algorithm that uses forward 

selection to discover neighbours based on the maximum and minimum associations 

observed in subset nodes during previous iteration [42]. 

vi. The HC (Hill-Climbing) score-based algorithm that searches the space of directed graphs 

using greedy search [43]. 

vii. The TABU (Tabu Search) scored-based algorithm that is a modified HC version designed 

to escape local optima [43]. 
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viii. The MMHC (Max-Min Hill-Climbing) hybrid algorithm, which is based on MMPC and 

HC algorithms, and is said to outperform several prototypical and state-of-the-art 

algorithms [14]. 

ix. The IAMB (Incremental Association) constraint-based algorithm which is a Markov 

blanket detection algorithm using forward selection search [44]. 

x. The RSMAX2 (Restricted Maximization) hybrid algorithm which is a modified version of 

MMHC that uses different combinations of constraint-based and score-based searches [45, 

46]. 

 

The TETRAD  freeware version 6.5.3 was used to run the PC, FCI, and FGES algorithms with their 

default parameter inputs, and the bnlearn R Statistical package v4.4 was used to run the GS, 

MMPC, HC, TABU, MMHC, IAMB, and RSMAX2 algorithms with their default parameter inputs 

[46]. 

3.4 Results and discussion 

The results are based on the four case studies discussed in Section 3.1, and on a total of 10 datasets. 

The 10 datasets are the result of dividing each of the two synthetic case studies into four datasets of 

different sample size; i.e., 0.1, 1, 10, and 100 thousand samples per dataset per synthetic case. 

The Saiyan algorithm is tested over different combinations of parameter input. Specifically, 

42 graphs are generated for each dataset, where each of those 42 graphs represents a unique 

combination of the following parameters: 

 

i. Three types of MMD  score to measure the discrepancy between prior and posterior 

distributions; i.e. MN, MX, and MM as defined in Section 2.1. 

ii. Seven different discrepancy thresholds 𝜃 , which represent the threshold above which a 

relationship is established between variables given the MMD score, as defined in Section 2.2. 

The seven thresholds tested are 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, and 0.3. 

iii. Two input values for constant 𝑐 (0 or 1), which modifies the maximum number of parents a 

node can have as defined in Section 2.3. 

 

Since the evaluation is based on 10 datasets, a total of 100 graphs are generated by the other 

algorithms (one graph per dataset per algorithm), and 420 graphs are generated by the Saiyan 

algorithm (42 graphs per dataset). Therefore, the results from this evaluation illustrate how the 

Saiyan algorithm with unoptimised parameters (i.e., over 42 different parameter inputs) performs 

relative to the 10 algorithms with default parameters.  

 Figs 3 and 4 present the ranking of the algorithms, as determined by each of the four 

metrics, in terms of how well they predict the Football and Forensic medicine knowledge-based 

graphs. Two scores are reported for Saiyan; the best and worst scores over the 42 graphs 

generated per case study. 
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Fig. 3. Football case study: Performance of each algorithm as determined by each of the four metrics, in 

terms of how well they predict the knowledge-based graph. Algorithms Saiyan [b] and Saiyan [w] represent 

the best (highlighted in orange) and worst (highlighted in red) scores respectively, over the 42 parameter 

input combinations. 

 

Fig. 4. Forensic medicine case study: Performance of each algorithm as determined by each of the four 

metrics, in terms of how well they predict the knowledge-based graph. Algorithms Saiyan [b] and Saiyan [w] 

represent the best (highlighted in orange) and worst (highlighted in red) scores respectively, over the 42 

parameter input combinations. 

Overall, the algorithms have done well in predicting the Football knowledge-based graph, but 

not well in predicting the more complex Forensic medicine graph. The same applies to the Saiyan 

algorithm. However, not being able to discover a graph that closely approximates the knowledge-

based graph does not imply that the graph discovered is inaccurate. Still, these results suggest that 

the algorithms are rather consistent in the graphs they generate; at least in relation to the knowledge-

based graphs.  

Interestingly, while the four metrics are generally in agreement when it comes to ranking the 

algorithms in the Football case study, they generate conflicting rankings in the Forensic medicine 
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case study. The most staggering example involves the GS algorithm; F1 and BSF metrics place GS 

at the bottom of the rankings whereas SHD and DDM metrics place GS at the top of the rankings. 

This inconsistency occurs because the GS generates a limited number of edges relative to the other 

algorithms (refer to Table 2). The limited number of edges is viewed positively by the SHD and 

DDM metrics which approximate classification accuracy and hence, tend to be biased in favour of 

empty graphs [37]. 

Similarly, Figs 5 and 6 rank the synthetic performance of the algorithms for the Property 

market and Alarm network case studies respectively. These graphs include the performance scores 

over all of the four different data sample sizes. Results of interest include: 

 

i. The TABU algorithm has topped all of the rankings and is closely followed by the similar 

HC algorithm. 

ii. While the Saiyan algorithm has not topped any of the rankings, its performance is 

competitive relative to most of the other algorithms. 

iii. The F1 (Recall and Precision) and BSF metrics tend to rank the Saiyan algorithm higher 

than the SHD and DDM metrics. 

iv. The worst performances of the Saiyan algorithm (i.e., Saiyan [b]) are often at the bottom of 

the rankings. This suggests that some of the parameter inputs tested, which are detailed in 

Appendix B, are far from being optimal and should be avoided. Tables B1, B2, and B3 

suggest that the inputs ‘Mean’, ‘5’, and ‘0’ for respective parameters MMD, 𝜃, and 𝑐, 

produce scores that are considerably inferior relative to the scores generated when based on 

the remaining parameter inputs tested. According to Table B4, however, even when we 

restrict the results to the better performing parameter inputs, it is still unclear which 

combination of inputs maximises performance over all cases. It is possible that the optimal 

parameters depend on the dimensionality of the data relative to the sample size of the input 

data. 

v. Increasing the sample size of the input data does not always improve accuracy. This 

observation applies to multiple algorithms, and applies to both synthetic case studies. 

However, in most cases the difference in scoring performance is rather marginal and may 

be due to random variability that arises once an algorithm is provided with enough data 

samples. 

vi. The results are not entirely consistent with those reported in [14], in which the MMHC 

outperforms several prototypical algorithms according to the SHD score, including the PC, 

GES, and GS algorithms tested in this paper. The RSMAX2 algorithm, which is a modified 

version of MMHC, appears to be on par with MMHC, as expected. 

 

Table 2 presents the number of arcs or edges discovered by each of the algorithms, as well 

as the number of independent graphical fragments (i.e., disjoint subgraphs) or variables generated by 

each of the algorithms, for each case study. Observations of interest include: 

 

i. The other algorithms will rarely return a graph that enables full propagation of evidence, 

despite all of the input variables being dependent. 

ii. The number of edges generated by the Saiyan algorithm appear to better approximate the 

knowledge-based or true number of edges. For example, in the Forensic medicine case 

none of the other algorithms came close to generating 103 edges. Remarkably, the GS 

algorithm only discovered 9 edges and yet, the SHD and DDM metrics considered GS to 

be the best performing algorithm (refer to Fig 4). This observation serves as further 

evidence that simple classification accuracy, which these metrics approximate, can be 
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misleading. Moreover, five of the other algorithms (GS, MMHC, IAMB, MMPC, and 

RSMAX2) also generated a low number of edges relative to the true number of edges, for 

both synthetic experiments and irrespective of sample size. 

iii. In the Property market case study, the variability in the number of edges discovered is 

minor for the Saiyan algorithm (over its 168 graphs), whereas it is much higher for the 

other algorithms (over just four graphs; one per sample size). This difference is relaxed in 

the Alarm network case. Overall, these results suggest that Saiyan is more consistent in the 

number of edges discovered, which is a consequence of the assumption that all of the input 

variables are dependent. 

iv. While the restriction to enable full propagation of evidence is expected to lead to more 

complex graphs, Table 2 suggests that this is often, but not always, the case. For example, 

in the Property market case the PC, FCI and FGES algorithms generated a much higher 

number of edges across all four sample size cases, compared to the Saiyan’s maximum 

number of edges generated across all of the 168 different graphs. This observation, 

however, does not extend to the Alarm network case. Moreover, most of the other 

algorithms tend to generate simple models with limited edges when the sample size is low. 
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Fig. 5. Property market case study: Performance of each algorithm over different sample sizes, as determined by each of the four metrics, in terms of how well they 

predict the hypothetical ground truth rule-based graph. Algorithms Saiyan [b] and Saiyan [w] represent the best (highlighted in orange) and worst (highlighted in red) 

scores respectively, over the 42 parameter input combinations, per sample size. 
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Fig. 6. ALARM network case study: Performance of each algorithm over different sample sizes, as determined by each of the four metrics, in terms of how well they 

predict the hypothetical ground truth graph. Algorithms Saiyan [b] and Saiyan [w] represent the best (highlighted in orange) and worst (highlighted in red) scores 

respectively, over the 42 parameter input combinations, per sample size. 



 

 ACM Transactions on Knowledge Discovery from Data, Vol. ?, No. ?, Article ?. Publication date: ? 2020. 

Table 2. The number of edges and independent graphical fragments (or disjoint subgraphs) discovered per 

algorithm per case study. 

Case Variables 
True 

arcs 
Algorithms Graphs generated Edges discovered 

Independent 

graphical fragments 

 

 

 

 

 

Football 

 

 

 

 

 

7 

 

 

 

 

 

6 

Saiyan  42 6 to 9 1 

PC 1 6 1 

FCI 1 6 1 

FGES 1 6 1 

GS 1 3 4 

MMHC 1 6 1 

IAMB 1 6 1 

HC 1 6 1 

MMPC 1 6 1 

TABU 1 6 1 

RSMAX2 1 6 1 

 

 

 

 

Forensic 

medicine 

 

 

 

 

 

56 

 

 

 

 

 

103 

Saiyan 42 55 to 111 1 

PC 1 69 7 

FCI 1 69 7 

FGES 1 76 5 

GS 1 9 47 

MMHC 1 39 19 

IAMB 1 44 17 

HC 1 72 4 

MMPC 1 43 18 

TABU 1 72 4 

RSMAX2 1 39 20 

 

 

 

 

Property 

market 

 

 

 

 

 

27 

 

 

 

 

 

31 

Saiyan 168 26 to 29 1 

PC 4 13 to 57 3 to 15 

FCI 4 13 to 57 3 to 15 

FGES 4 16 to 56 1 to 11 

GS 4 7 to 20 9 to 20 

MMHC 4 5 to 24 8 to 22 

IAMB 4 6 to 23 9 to 21 

HC 4 15 to 37 1 to 12 

MMPC 4 6 to 24 9 to 21 

TABU 4 15 to 37 1 to 12 

RSMAX2 4 5 to 22 9 to 22 

 

 

 

 

Alarm 

network 

 

 

 

 

 

37 

 

 

 

 

 

46 

Saiyan 168 36 to 57 1 

PC 4 21 to 45 2 to 16 

FCI 4 21 to 45 2 to 16 

FGES 4 30 to 45 2 to 10 

GS 4 11 to 26 12 to 26 

MMHC 4 13 to 32 7 to 24 

IAMB 4 13 to 33 6 to 24 

HC 4 31 to 51 2 to 7 

MMPC 4 13 to 32 7 to 24 

TABU 4 31 to 45 2 to 7 

RSMAX2 4 13 to 30 9 to 24 
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Fig. 7. Overall performance of the Saiyan algorithm (over all 42 input unoptimised combinations) relative to 

the overall performance of the other 10 algorithms. The bars illustrate the percentage of the Saiyan’s scores 

being inferior, on par, and superior, relative to the respective scores generated by the other 10 algorithms. 

4 CONCLUDING REMARKS AND FUTURE WORK 

This paper presented a BN structure learning algorithm, called Saiyan, which is based on a novel 

scoring function to determine relationships between variables, and follows an unconventional six-

phase associational heuristic approach to generate a DAG that enables full propagation of evidence. 

 In guaranteeing full propagation of evidence, Saiyan ‘forces’ the discovery of edges that 

would otherwise remain undiscovered, and these additional edges are not expected to be correct at 

the rate of those identified unrestrictedly. The assumption that the input variables are dependent is 

a practical solution and not a theoretical advancement, which means that the restriction may 

negatively impact the evaluation scores. Moreover, Saiyan represents an associational heuristic 

that, in theory, is not expected to perform well relative to more sophisticated approaches, such as 

those based on constraint-based and score-based learning. Still, the empirical results suggest that 

this heuristic is as competitive as the average algorithm evaluated in this study. 

The Saiyan algorithm represents an experimental implementation.  Planned extensions of 

this research will investigate the impact of the assumption to enable full propagation of evidence on 

constraint-based and score-based learning. The latest version of the Saiyan algorithm, along with 

relevant datasets and Bayesian Network case studies, is available online [47] . 
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APPENDIX A: SAMPLE GRAPHS GENERATED BY SAIYAN 

 

 

Fig. A.1. Sample graphs generated by the Saiyan algorithm over the different learning phases when applied 

to the football case study with parameters inputs MMD = 𝑀𝑒𝑎𝑛, 𝜃 = 0.05, 𝑐 = 0. The maximum number of 

parents is determined to be 3. The scores associated with each edge represent the MMD scores for the 

particular phase. The red dashed arcs represent arcs eliminated, and the blue dashed arcs represent arcs 

reversed. 
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APPENDIX B: SYNTHETIC PERFORMANCE SAIYAN BASED ON DIFFERENT 

PARAMETER INPUTS 

Table B.1. Overall synthetic performance over parameters MMD. Worst performances are highlighted in red 

and best performances in yellow. 

MMD 

input 
F1 BSF SHD DDM 

Mean 0.529 0.444 31.168 -0.364 

Max 0.554 0.482 31.133 -0.311 

MeanMax 0.556 0.480 30.566 -0.300 

Table B.2. Overall synthetic performance over parameters 𝑐. Worst performances are highlighted in red and 

best performances in yellow. 

𝑐 

input 
F1 BSF SHD DDM 

0 0.531 0.455 32.148 -0.369 

1 0.562 0.483 29.763 -0.281 

Table B.3. Overall synthetic performance over parameters 𝜃. Worst performances are highlighted in red and 

best performances in yellow. 

𝜃 

input 
F1 BSF SHD DDM 

5 0.522 0.462 34.448 -0.401 

7 0.544 0.4763 31.656 -0.329 

10 0.551 0.4758 30.427 -0.303 

15 0.559 0.473 28.823 -0.277 

20 0.565 0.474 28.083 -0.261 

25 0.569 0.473 27.604 -0.251 

30 0.576 0.4756 26.875 -0.233 

Table B.4. Detailed synthetic performance over each combination of parameters MMD, 𝑐, and 𝜃, excluding 

the combinations that led to the worst performances highlighted in Tables B1, B2, and B3. Worst 

performances are highlighted in red and best performances in yellow, per sample size. 

MMD 

input 

𝜃 

input 

Sample 

size 
F1 BSF SHD DDM 

Max 7 0.1k 0.329 0.259 47.000 -0.929 

MeanMax 7 0.1k 0.325 0.254 46.625 -0.932 

Max 10 0.1k 0.347 0.274 45.125 -0.867 

MeanMax 10 0.1k 0.380 0.301 41.875 -0.762 

Max 15 0.1k 0.400 0.313 39.375 -0.694 

MeanMax 15 0.1k 0.419 0.329 37.625 -0.642 

Max 20 0.1k 0.419 0.330 37.875 -0.645 

MeanMax 20 0.1k 0.427 0.337 37.125 -0.623 

Max 25 0.1k 0.433 0.345 37.125 -0.610 

MeanMax 25 0.1k 0.430 0.337 36.625 -0.612 

Max 30 0.1k 0.436 0.345 36.625 -0.599 
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MeanMax 30 0.1k 0.435 0.343 36.500 -0.599 

Max 7 1k 0.582 0.514 29.500 -0.232 

MeanMax 7 1k 0.575 0.510 30.500 -0.257 

Max 10 1k 0.587 0.515 28.750 -0.218 

MeanMax 10 1k 0.561 0.489 30.750 -0.289 

Max 15 1k 0.572 0.494 29.000 -0.253 

MeanMax 15 1k 0.537 0.462 31.625 -0.348 

Max 20 1k 0.576 0.493 28.750 -0.243 

MeanMax 20 1k 0.548 0.464 30.125 -0.315 

Max 25 1k 0.574 0.490 28.500 -0.245 

MeanMax 25 1k 0.545 0.459 30.000 -0.323 

Max 30 1k 0.577 0.491 27.875 -0.237 

MeanMax 30 1k 0.569 0.478 27.750 -0.258 

Max 7 10k 0.645 0.589 25.000 -0.053 

MeanMax 7 10k 0.676 0.607 22.375 0.033 

Max 10 10k 0.647 0.592 24.875 -0.048 

MeanMax 10 10k 0.666 0.596 23.000 0.006 

Max 15 10k 0.668 0.592 22.375 0.009 

MeanMax 15 10k 0.660 0.584 22.875 -0.007 

Max 20 10k 0.661 0.584 22.625 -0.007 

MeanMax 20 10k 0.661 0.561 21.750 -0.012 

Max 25 10k 0.666 0.580 21.875 0.004 

MeanMax 25 10k 0.642 0.539 22.500 -0.061 

Max 30 10k 0.653 0.554 21.875 -0.034 

MeanMax 30 10k 0.651 0.546 21.750 -0.039 

Max 7 100k 0.657 0.593 24.250 -0.024 

MeanMax 7 100k 0.650 0.589 25.125 -0.046 

Max 10 100k 0.660 0.597 24.125 -0.016 

MeanMax 10 100k 0.656 0.577 23.625 -0.024 

Max 15 100k 0.633 0.540 24.000 -0.086 

MeanMax 15 100k 0.650 0.557 22.875 -0.040 

Max 20 100k 0.645 0.552 23.000 -0.053 

MeanMax 20 100k 0.663 0.569 22.000 -0.007 

Max 25 100k 0.650 0.548 22.250 -0.042 

MeanMax 25 100k 0.656 0.560 22.250 -0.026 

Max 30 100k 0.659 0.549 21.250 -0.021 

MeanMax 30 100k 0.674 0.564 20.250 0.018 
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