12 research outputs found

    Why do These Match? Explaining the Behavior of Image Similarity Models

    Full text link
    Explaining a deep learning model can help users understand its behavior and allow researchers to discern its shortcomings. Recent work has primarily focused on explaining models for tasks like image classification or visual question answering. In this paper, we introduce Salient Attributes for Network Explanation (SANE) to explain image similarity models, where a model's output is a score measuring the similarity of two inputs rather than a classification score. In this task, an explanation depends on both of the input images, so standard methods do not apply. Our SANE explanations pairs a saliency map identifying important image regions with an attribute that best explains the match. We find that our explanations provide additional information not typically captured by saliency maps alone, and can also improve performance on the classic task of attribute recognition. Our approach's ability to generalize is demonstrated on two datasets from diverse domains, Polyvore Outfits and Animals with Attributes 2. Code available at: https://github.com/VisionLearningGroup/SANEComment: Accepted at ECCV 202

    Attribute disentanglement with gradient reversal for interactive fashion retrieval

    Get PDF
    Interactive fashion search is gaining more and more interest thanks to the rapid diffusion of online retailers. It allows users to browse fashion items and perform attribute manipulations, modifying parts or details of given garments. To successfully model and analyze garments at such a fine-grained level, it is necessary to obtain attribute-wise representations, separating information relative to different characteristics. In this work we propose an attribute disentanglement method based on attribute classifiers and the usage of gradient reversal layers. This combination allows us to learn attribute-specific features, removing unwanted details from each representation. We test the effectiveness of our learned features in a fashion attribute manipulation task, obtaining state of the art results. Furthermore, to favor training stability we present a novel loss balancing approach, preventing reversed losses to diverge during the optimization process

    MMFL-Net: Multi-scale and Multi-granularity Feature Learning for Cross-domain Fashion Retrieval

    Full text link
    Instance-level image retrieval in fashion is a challenging issue owing to its increasing importance in real-scenario visual fashion search. Cross-domain fashion retrieval aims to match the unconstrained customer images as queries for photographs provided by retailers; however, it is a difficult task due to a wide range of consumer-to-shop (C2S) domain discrepancies and also considering that clothing image is vulnerable to various non-rigid deformations. To this end, we propose a novel multi-scale and multi-granularity feature learning network (MMFL-Net), which can jointly learn global-local aggregation feature representations of clothing images in a unified framework, aiming to train a cross-domain model for C2S fashion visual similarity. First, a new semantic-spatial feature fusion part is designed to bridge the semantic-spatial gap by applying top-down and bottom-up bidirectional multi-scale feature fusion. Next, a multi-branch deep network architecture is introduced to capture global salient, part-informed, and local detailed information, and extracting robust and discrimination feature embedding by integrating the similarity learning of coarse-to-fine embedding with the multiple granularities. Finally, the improved trihard loss, center loss, and multi-task classification loss are adopted for our MMFL-Net, which can jointly optimize intra-class and inter-class distance and thus explicitly improve intra-class compactness and inter-class discriminability between its visual representations for feature learning. Furthermore, our proposed model also combines the multi-task attribute recognition and classification module with multi-label semantic attributes and product ID labels. Experimental results demonstrate that our proposed MMFL-Net achieves significant improvement over the state-of-the-art methods on the two datasets, DeepFashion-C2S and Street2Shop.Comment: 27 pages, 12 figures, Published by <Multimedia Tools and Applications
    corecore