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1. Introduction

After e-commerce boom, with massive sales increases in online shopping, the field of
visual clothing analysis started getting increased attention, as fashion industry began
to look for new ways to add value to customers around their base product. Research
progress in the field of visual fashion understanding has partially been driven by the
enormous commercial potential and can be attributed to a wide spectrum of possible
industry applications. The field has drawn more attention from the research community

in recent years.

1.1 Description of the discipline

Computer vision (CV) has made great progress in recent decade, with applications in
many industries. In the context of understanding fashion, which is a visual medium,
relevant descriptor features cannot be captured by text. Therefore, there is a need
for application of vision-based methods for automatic feature extraction from fashion
images. Fashion is a domain in which data is represented almost exclusively by images
which makes it a natural application domain for computer vision techniques. However,
applying CV methods in fashion context (pictures of clothing on people) has been
challenging because of significant in-picture variance of person’s pose, lighting, human’s
body proportions and camera angle.

CV-based visual fashion understanding field (VFU) consists of many different sub-
problems. We can distinguish five most important visual fashion understanding
tasks, all of which are a part of actual industry applications, such as shop assistant.
Firstly, category classification, deals with predicting what type of clothing garment
has been detected, e.g. dress/trousers etc. Secondly, attributes prediction focuses
on finding detailed descriptions for each detected clothing category, e.g. fabric - tweed,
shape - cropped. Thirdly, clothes detection focuses on finding areas of the picture
with clothing garments. The fourth task is landmark and pose estimation, which
deals with predicting essential points on a person’s body to understand his/her pose.
The fifth task is clothes retrieval, which deals with finding similar pieces of clothing

in a database, based on a visual query.
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Practical applications in VFU are possible by leveraging data in order to better
understand individual clothing items in images, as well as improve understanding of
relations between garments. Such applications are already in use by leading players in
fashion technology industry. VFU tasks, however, are not easy and major challenges
were encountered, while trying to improve performance of algorithms in visual fashion
field [33]. The most significant challenges are: 1) Large variance of clothes attributes,
such as garment’s texture type or shape, 2) Deformation of clothes in actual, real-
world pictures (e.g. not containing the whole garment in one picture), 3) Variation of
scenarios under which a picture was taken, such as pose of the person wearing clothes
in the picture, lightening or position of the camera.

Visual fashion understanding (VFU; also called: fashion recognition, fashion
image analysis) discipline aims to solve tasks such as described above, as well as many
others in the area, by leveraging fashion-related, domain-specific data and vision-based
algorithms.

Fashion garment (also: clothing piece) is an individual piece of clothing that
can be recognized in a fashion-related picture. Garments are fundamental elements in
VFU models. Recognition and understanding of garments are the most crucial issues
in the VFU discipline.

Multi-task learning is an approach in machine learning, where a model learns
to optimize loss functions for multiple tasks at the same time. Features/representations
are passed between task-specific branches, which leads to knowledge sharing between
tasks.

In my work, I mainly focus on multi-task learning methods in the VFU discipline.

1.2 Historical and modern methods

Historically, the field of visual fashion understanding focused mainly on clothing recog-
nition sub-problem and used methods such as SIFT [21] or HOG [5]. Performance of
such predictive models were unsatisfactory, as models had access to limited represen-
tations, defined by human only [19].

After neural networks started obtaining exceptional results across many com-
puter vision tasks, researchers began looking into its potential applications in the area
of visual fashion understanding. These deep learning techniques, and in particular
convolutional neural networks [9] (CNNs), are behind all the major improvements in
the field. Nowadays, CNNs are considered state-of-the-art methods across all visual
fashion tasks, such as attribute prediction or shop retrieval. CNN-based models out-
performed prior methods by huge margins. Success of CNNs can be attributed to

having much broader representation capabilities, as feature representations are being
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found automatically, without any human involvement in the process. Therefore, that
led to more discriminative properties of built models. These successes were also made
possible through availability of large datasets related to visual fashion (described in
Section 2.1). It allowed for creation of universal benchmarks which are a foundation
for comparison between different neural models.

Deep learning methods are highly suitable to be applied in VFU, because of
their specific characteristics. Firstly, neural architectures allow for efficient learning,
as they use hierarchical layer decomposition of weights with non-linear activations.
These activations are able to learn hierarchical relations in discriminative manner,
because weights in subsequent layers are influenced by each other. That leads to models
having exponential discriminative power in relation to the number of parameters in the
network. Secondly, universal composition structure of neural architectures might use
variety of structural decompositions in order to understand context around phenomena
they are modeling. That allows for creation of tailored algorithms for different problems
[3]. Thirdly, automatic representation in deep neural networks gives them ability to
find patterns in visual data through finding automatic representations, without the

need for any formal problem description.

1.3 Solutions

In Chapter 2, I focus on describing current state-of-the-art methods for tasks across the
VFU field. Vast majority of those solutions use convolutional neural networks (CNNs)
for extraction of visual features. It is beyond the scope of this work to provide detailed
explanation of CNNs [9] and it is assumed reader has knowledge in that area. Two of
the most common architectures of CNNs are VGG-16 [24] and ResNet [11].

I describe my survey of published VFU methods in Chapter 2. Some of them aim
to make fashion models generalize better across tasks in the VFU field. Other focus just
on obtaining satisfactory performance in a narrowly defined task, as can be measured
by accuracy. Regardless of that, it is valuable to learn successes and challenges of
those methods, before reading about my novel contribution, as those solutions serve as
a logical foundation to further analysis in Chapter 3.

Before diving into VFU solutions, in Section 2.1 I describe most important
datasets in the field, which are used by algorithms described further. Methods dedi-
cated to categorization tasks are described in Section 2.2. Methods dedicated to local-
ization tasks are described in Section 2.3. Issues related to retrieval tasks are described
in Section 2.4. State-of-the-art methods which focus on sharing knowledge between
tasks, in order to get closer to more generalizable fashion understanding models, are

described in Section 2.5. Those methods introduce concepts such as landmark pool-
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ing [19], feature map upsampling [16] or localization-aided attribute awareness [12, 2.
Performance analysis of those state-of-the-art algorithms is a good starting point for

further discussion.

1.4 Goal of this work

When researchers propose novel VFU solutions with an aim of improving understand-
ing of fashion, through introduction of new elements in neural architectures, they are
mostly using traditional metrics such as accuracy or recall to measure these improve-
ments. While these approaches work well for comparing different algorithms between
each other, as they use constant benchmarks, they do not provide any notion of mea-
suring algorithm’s generalization abilities for understanding fashion across tasks.

At the heart of all VFU tasks, described in Section 1.1 is understanding fashion
garments. No matter what is the end goal of an algorithm, all of the VFU-related
algorithms try to learn an accurate representation of what a garment is by looking
at this problem from different perspectives. 1 strongly believe that a path towards
more general fashion model leads through more task-agnostic understanding of clothing
garments. [ believe that algorithms designed for different tasks could benefit from
sharing information between each other and try to optimize loss functions jointly.
Optimal representations could be used for many applications and shared between tasks
so that one task could benefit from others. Losses could be averaged in each training
epoch, which would lead to performance improving across many VFU tasks.

In this work, I try to understand how to leverage multi-task learning approach in
order to build more generalizable fashion models. I focus on surveying modern deep
learning-based state-of-the-art approaches designed for solving VFU tasks. I believe
that VF'U tasks are related to each other and building multi-task learning models can
be beneficial for improving generalization across visual fashion understanding field.

In order to validate this hypothesis, I built two solutions. The first one uses the
multi-task learning approach by sharing features between tasks, while second one does
not. After making necessary implementation experiments, I assess whether knowledge
sharing between tasks contributes to improved metrics for the underlying task and

therefore to generalization ability across wider visual fashion understanding domain.



2. Methodologies

In order to understand how different deep learning methods could be used in order
to improve generalization properties of models in VFU, we need to first understand
how different, essential elements contribute to the algorithm’s performance. In this
chapter I describe my survey of those concepts, as discussed in the scientific literature.
In Section 2.1, I describe most commonly used VFU datasets of today, as well as
comparison benchmarks which are based on those datasets. In Section 2.2, I describe
most important solutions from the research literature, which focus on categorization-
based VFU tasks, such as garment type or attribute prediction. In Section 2.3 I focus
on describing localization-related issues in VFU, such as importance of landmarks or
differences between segmentation and detection. In Section 2.4, I describe VFU tasks
of retrieval and search. Finally, in Section 2.5, I describe novel state-of-the-art solutions

in VFU, which share knowledge between tasks through multi-task learning.

2.1 VFU datasets and benchmarks

Datasets proved to be one of the driving forces in development of artificial intelli-
gence (AI). ImageNet [6] extensively contributed to progress in computer vision field
by providing a universal and massively labeled dataset for image recognition and clas-
sification. However, ImageNet provided only course-grained category annotations with
single label per image. When dealing with real-world scenarios, applications need to
be trained on domain-specific, multi-label datasets with fine-grained descriptions of
recognized items’ attributes [10].

Recent advancements in clothing understanding have been heavily influenced by
availability of field-specific clothing image datasets [13, 28]. However, before the in-
troduction of DeepFashion [19], datasets lacked comprehensive annotations required to
perform any advanced supervised learning process on them. This disadvantage made

traditional datasets not particularly useful in any practical VFU application.



6 CHAPTER 2. METHODOLOGIES

2.1.1 DeepFashion dataset

DeepFashion [19] is a clothes dataset of over 800K images, comprehensively annotated
with categories, attributes, clothing landmarks, and cross-pose/cross-domain pairs.
Those pairs are corresponding-to-each-other images taken across varied domains, shot
angles or person’s poses. Introduction of massive DeepFashion allowed for further
research into visual fashion field and opened the possibility of any real-world application
in the domain.

DeepFashion (DF) solved the problem, which existed in earlier visual fashion
datasets, which consisted of only limited amount of attributes, bounding boxes or
cross-domain relationships, and were not sufficient for effective learning for attribute
or landmark prediction. What makes DeepFashion a much better dataset for these
types of tasks, are its distinctive properties. Firstly, DF contains rich, fine-grained
annotations of categories and attributes, as there are 50 categories and over 1000 de-
scriptive attributes available [19]. Such massive attributes are essential in order to
represent large clothing properties. Scale and massiveness of attribute annotations can
be seen in Table 2.1. As we can see in the Table, DeepFashion is a much larger and more
densely annotated dataset than its competitors. Secondly, landmark annotations re-
placed previously used bounding boxes, which allows for better localization properties.
Each image is labeled with 4-8 landmarks. Landmark annotations help with dealing
with deformations or variation of poses. Landmarks are described in more detail in
Section 2.3.1. Technicality of landmark labeling is shown in Figure 2.1. Thirdly, DF
has high domain variance of picture types, as the dataset includes variety of fashion
pictures ranging from professional online store pictures to consumer photos on social
media. Fourthly, cross-domain information availability is DF’s another strong prop-
erty, as it contains over 300000 cross-pose or cross-domain pairs between pictures from
different domains containing the same clothing garment. These consumer-to-shop pairs
(consumer picture, professional shop photograph) help with bridging the information
gap between domains. Fifthly, another DF’s advantage is the size of the dataset (over
800000 data points), which was by far the largest domain dataset introduced when
compared to available resources before the arrival of DeepFashion. Sixthly, public
availability of the dataset allows for the research community to be able to use it in

order to introduce new methods in the field.
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Table 2.1: Scale and richness of annotations in DeepFashion [19]

H Where To Buy It [13] DARN [12] DeepFashion [19]
Number of images 79K 183K over 800K
Number of categories and attributes || 11 179 1050
Numbers of pairs 39K 91K over 300K
Localization annotation No No Yes: 4-8 landmarks
Public availability No No Yes

Figure 2.1: Landmark annotations in DeepFashion [19]

Besides DeepFashion’s many advantages, the dataset has its flaws as well. Firstly,
there is only single clothing garment per picture, which might result in models being
skewed towards recognizing only the main garment in the picture [19]. Secondly, there
are 4-8 landmarks per picture, which is an improvement compared to bounding boxes
but it is still not precise enough to accurately describe localization of the garment
in the picture. Thirdly, every clothing category shares the same landmark structure.
Fourthly, there are no per-pixel masks on picture, which might make model have diffi-

culty recognizing multiple clothes close to each other.

2.1.2 DeepFashion benchmark

Besides all of the usability of DeepFashion in training algorithms for better perfor-
mance, the dataset also contributes benchmarks for three visual fashion sub-problems,
namely: clothing attribute recognition, in-shop clothes retrieval and cross-domain
clothes retrieval [19]. These benchmarks, which are comparison frameworks for partic-
ular tasks, allow for different algorithms and methods to be compared between each
other against the constant baseline. Later in my work, I use benchmarks of DeepFash-

ion extensively in order to test how different elements of an algorithm contribute to its
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prediction performance. Testing against the high-quality benchmark can be used in or-
der to learn positive and negative properties of different neural network modules, which
may lead to more powerful visual fashion understanding systems in image recognition
and retrieval sub-problems.

Category and attribute prediction benchmark [19] contains over 63000
images and provides a testing framework for classifying 50 fine-grained categories and
1000 attributes. Category prediction performance evaluation uses a standard top-k
classification accuracy metric. Attribute prediction is measured with top-k recall rates,
which measure how many predicted attribute scores match with the ground truth labels.
Attributes are segmented into five groups which describe whether the attribute relates
to texture, fabric, shape, body part or style. Figure 2.2 graphically depicts properties
of the benchmark. In the upper part of that Figure, example pictures for category
and attribute groups are given. Categories and attributes are stored separately as
categorical variables. In the lower part of that Figure, we can see that benchmark

labels are not balanced, as some attributes are represented more densely.

Catego Texture Fabric Part Style
Ramper oodie Palm %}rhlock Lea_ther" 'l‘wee Crop Midi Bow-F FrmEedH Mickey Baseball

120000 S
g

"lmlllﬂ
. = 41 | lIn
N InEnnnns III. [ 1] - LT

FEF ST ESFE S S &, S S S & & S F P,
’ c"‘\“"e“‘:@é\ S N :\"'\* o ”‘o“n & fpﬁﬁﬁ Q:“'o \ ’q&‘&: i \;- J}w‘é S t-%“ & "‘q 4“;“%‘}“\‘ S "Qi;f; e f& S “sd 1"“’-!-"'\"& S
(\9

Figure 2.2: Category and attribute examples [19]

In-shop clothes retrieval benchmark [19] contains over 54000 images of 11735
clothing items from the professional fashion store and provides a testing framework for
checking whether two in-shop images contain the same clothing item. It is particularly
important when the photo is shared outside of the shop and visual query is the only
method for the customer to obtain more information about the garment. Performance
is measured by top-k retrieval accuracy, which calculates the rate of successful retrieval

processes. In-shop clothes retrieval task is visually summarized in Figure 2.3. On the
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left side of that Figure, we can see input query images. System can be queried by
such pictures and it returns the most similar retrieved images from the same in-shop

domain, what can be seen on the right side of the Figure.

Figure 2.3: In-shop retrieval task visualization [19]

Consumer-to-shop retrieval benchmark [19] contains over 250000 image
pairs between domain of consumer pictures and shop photographs and provides a test-
ing framework for checking whether pictures from different domains contain the same
garment. Performance is measured by top-k retrieval accuracy. Consumer-to-shop
clothes retrieval task is visually summarized in Figure 2.4. As we can see on the left
side of the Figure, system can be queried with a picture and it returns the most similar
retrieved images across available domains (what can be seen on the right side of the

Figure), with the green color marking the correct between-domains garment matching.

Figure 2.4: Consumer-to-shop retrieval task visualization [19]
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2.1.3 DeepFashion2 dataset

A good VFU system should be able to recognize a clothing garment correctly across
different domains (consumer pictures, professional shop studio photographs etc.). One
of the main challenges of applying VFU methods in real-world applications is the issue
of clothes ambiguity across domains, as occlusion or deformations of pictures in popular
datasets [19, 20] make it extremely hard to learn cross-domain relationships for clothes.
DeepFashion2 [8] is a novel dataset that aims to solve this issue.

DeepFashion2 [8] (DF2) builds on top of DeepFashion [19] and addresses its prob-
lems, described in Section 2.1.1. DeepFashion2 dataset contains 491K images and 801K
clothing items, with 13 clothing categories and rich, fine-grained annotations. There
are 43.8K clothes identities, where each identity is a set of almost-identical clothing
garments. Clothes from the same identity across different domains (consumer, com-
mercial) form a cross-domain pair. There are 873K such pairs. DeepFashion2 remains
the largest and most densely annotated VFU dataset to date, as of writing of this
paper, and it facilitates further research in VFU.

DeepFashion2 has seven unique properties, that make it stand out from other
VFU datasets [19, 10, 20, 33, 13]. Firstly, DF2 is of large size and contains 801K
clothing items, 491K images, 43.8K identities (with on average 12.7 items related to it)
and 873K consumer-commercial pairs [8]. Secondly, DF2 has rich annotations of style,
scale, viewpoint, occlusion, bounding box, dense landmarks, zooming, per-pixel masks.
Thirdly, for each of the 4 main properties (scale, occlusion, zoom-in, viewpoint), a
difficulty level is assigned, e.g. a garment shown from the back will have a high-level
of viewpoint difficulty. Fourthly, DF2 allows for support of multiple tasks of visual
fashion understanding: clothes detection, landmark and pose estimation, instance seg-
mentation, and cross-domain clothes retrieval. Fifthly, DF2 might possibly contain
multiple clothing items in one picture. Sixthly, DF2 has different landmark structure
for different clothing categories, e.g. skirt needs different amount of landmarks in a
different structure than a shirt does (an average category contains 23 landmarks, com-
pared to 6 in DeepFashion [19]). Seventhly, high variance of scale, occlusion, zooming

and viewpoint in the dataset allows for diversity of examples in the training set.
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Figure 2.5: Variety of DeepFashion2 dataset [8]

Variety of DeepFashion2 can be seen in Figure 2.5. As we can see, there is a high
variety of viewpoints, zoom-in properties, occlusion and scale. Also, different landmark
structures are assigned to different clothes categories. Identities across rows can come
either from commercial or consumer domain [8]. Cross-domain pairs are also shown.

Each clothing item has its landmarks and pixel mask.

2.1.4 DeepFashion2 benchmarks

DeepFashion2 [8] also provides novel benchmarks for VFU tasks of clothes detection,
pose estimation, segmentation and clothes retrieval. Various researchers were working
on providing universal benchmarks for different VFU tasks [20, 27], but DeepFashion2
is the first work to introduce a unified approach for all of these tasks.

High variance of values in regards to scale, occlusion, zoom-in and viewpoint prop-
erties, as well as richness of annotations, with each clothing item containing information
about its bounding box, dense landmarks, per-pixel masks and a consumer-commercial
pair mapping, allowed for creators of DeepFashion2 to create 4 benchmarks based on
the dataset [8]. Clothes detection benchmark predicts a category and a bound-
ing box for each detected clothing in a picture. Landmark estimation benchmark
predicts landmark keypoints for each detected clothing. Segmentation benchmark
predicts pixel-wise locations of detected clothes, with every pixel being assigned to
one of the categories or to background. Commercial-consumer clothes retrieval
benchmark aims to find a commercial-domain image paired to each detected clothing

item in a consumer-domain photograph. Lack of clothes attribute annotations and any
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benchmark related to it remains to be DeepFashion2’s greatest weakness.

2.1.5 iFashion-Attribute dataset

iMaterialist Fashion Attribute Dataset (or iFashion-Attribute) [10] is fashion images
dataset of more than 1M images with dense annotations of 228 attributes grouped
into 8 types of attributes. It is the largest available attribute-centered fashion dataset,
which makes it suitable to be used in real-world problems. Release of the dataset

encouraged more research into attribute prediction in the VFU field.

Table 2.2: Multi-label attribute annotations in iFashion-Attribute; reproduced [10]

Attribute H Amount of labels Value examples

Category || 914K Heels, Cargo Pants, Jeans

Color 895K Black, Gold, Green

Gender 1013K Male, Female, Neutral
Material 701K Nylon, Patent, Cotton
Neckline 722K Turtlenecks, U-Necks, Square Necked
Pattern 325K Camouflage, Checkered, Floral
Sleeve 734K Sleeveless, Short Sleeves, Long Sleeved
Style 610K Asymmetric, Vintage Retro, Summer

iFashion-Attribute is purposed solely for clothing attributes prediction, providing
multi-label annotations for each of the 8 groups of attributes: category, color, gender,
material, neckline, pattern, sleeve, style. Table 2.2 depicts scale of annotations for
each attribute group, as well as example values for those groups. Another property of
iFashion-Attribute is the fine-grained labeling. High granularity of attributes is bene-
ficial for building more precise models, that are able to represent complex phenomena
from the visual fashion world. However, fine-grained labels also make it harder for
algorithms to discriminate between classes correctly, when visual differences between
classes are minor and examples within one class have high variance [10]. As an exam-
ple, as we can see in Figure 2.6, "plaid" and "checkered" examples for red shirts are
more similar to each other, then each of them are to other examples within their own

class.
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Figure 2.6: Fine-grained attributes in iFashion-Attributes [10]

2.1.6 FLD dataset

Fashion Landmark Dataset (FLD) [20] is a subset of DeepFashion dataset [19], and
consists of over 123000 images with diverse poses, as well as substantial scale varia-
tions and zoom-in properties. Each image contains only one clothing garment. Each
garment is annotated with 8 fashion landmarks and their visibility rating. Pose and
zoom-in deviations from the norm are additionally labeled as normal/medium/large,
in order to logically distinguish images with different scale of these deviations. FLD
provides no other type of fashion annotations, besides landmarks. In order to tackle
challenges of garment localization described in Section 2.3, images of FLD dataset

contain substantial pose and scale variations, as we can see in Figure 2.7.

Figure 2.7: Landmark locations in FLD [20]
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2.1.7 DARN dataset

The main goal of retrieval in visual fashion is to find garment in the shop domain
image that corresponds to a query image in the consumer domain . A major challenge
in performing successful image retrieval in the visual fashion understanding discipline
is bridging the gap between domains, through modeling the discrepancy between do-
mains. Problems related to that issue are described in Section 2.4.1. Lack of training
sets which would have direct annotations between same clothing items in different
domains, made this task historically extremely challenging.

Learning cross-domain mappings started to be possible with the introduction of
DARN dataset [12] by Huang. DARN dataset consists of a large database of pairs
of clothing items, being depicted in a consumer photograph and in an online shop
picture. Availability of these direct cross-domain mappings is what makes any retrieval
task possible. DARN dataset includes around 450K online shopping store images with
clothing items and around 90K counterpart street images with exact same garments.
Some examples of these online-offline pairs can be seen in Figure 2.8. All images come
from either online clothing stores or consumer portals. Images show how clothes look
in the real world and their depictions reflect diversity of clothes appearance, which
allows for their modeling. Images in DARN show garments in different contexts and
scenarios, as they include variations in pose, background or lighting. This appearance

diversity is what helps retrieval systems to cross the domain gap.

Figure 2.8: Online-offline pairs [12]

Beyond street-shop pairs, the dataset includes also fine-grained attribute anno-
tations for each garment. Each image has 5-10 attribute type groups (also: attribute

categories, not to be mistaken with garment categories) [12]. Some of these attribute
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categories are garment color, collar pattern, shape and length of sleeve etc. Possible

values for these attribute types can be seen in Table 2.3.

Table 2.3: Attribute examples in DARN; reproduced [12]

Attribute groups H Value examples Amount of unique values
Clothes Button Double Breasted, Pullover 12
Clothes Category || T-Shirt, Skirt, Leather Coat 20
Clothes Color Black, White, Red, Blue 56
Clothes Length Regular, Long, Short 6
Clothes Pattern Pure, Stripe, Lattice, Dot 27
Clothes Shape Slim, Straight, Cloak, Loose 10
Collar Shape Round, Lapel, V-Neck 25
Sleeve Length Long, Three-Quarter, Sleeveless 7
Sleeve Shape Puff, Raglan, Petal, Pile 16

In summary, there are three distinctive features of DARN dataset: large scale of
the dataset, availability of online-offline pairs and fine-grained attributes. Massive scale
allows for training efficient neural networks for the task, fine-grained attributes allow
for learning semantic representations for clothing, while online-offline pairs provide a
possibility to learn the dissimilarity metric between domains [12]. Combining all of

these features together makes visual retrieval tasks in VFU possible.

2.1.8 ModaNet dataset

A breakthrough in clothing segmentation happened with publishing of the paper by
Zheng, where a new dataset called ModaNet [33] was introduced. ModaNet is the
largest dataset designed for fashion garment detection and segmentation. Its high
granularity of mask annotations, which can be seen on Figure 2.9, combined with
relatively large scale as for the segmentation-focused dataset makes researchers consider

ModaNet as the state-of-the-art dataset for fashion item segmentation and detection.

Figure 2.9: Mask annotation examples in ModaNet [33]

ModaNet is a fashion dataset containing over 55K fully-annotated, street fashion
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pictures, and has following properties. Firstly, dataset is dedicated primarily to gar-
ment segmentation task. Secondly, it provides fine-grained, pixel-level segmentation
masks. Thirdly, dataset provides coordination information on polygons enclosing sep-
arate clothing garments. Fourthly, multi-item mask annotations on single image allow
for algorithms to learn essential visual features in "border areas" between garments
[33]. Fifthly, mask annotations can be transformed into bounding boxes in order to
redefine the problem as fashion garment detection. Sixthly, one of 13 clothing cate-
gory is assigned to each segmented garment. Seventhly, introduction of pose and shot
angle variance, allows for models fitted on the dataset to generalize well across whole
training data distribution. Eightly, variety of clothing types, appearances, styles and

composition makes ModaNet domain-agnostic.

2.1.9 Exact Street2Shop dataset

Exact Street2Shop (E2S) dataset has been built by Kiapour et al. [13] and can be
trained for finding street-to-shop domain mapping using pairs of exactly-matching gar-
ments in these two domains. The dataset consists of 40’000 pairs and is the largest
available dataset of that type.

First type of images are street photographs of people wearing clothes in real-world
uncontrolled setting. Those photographs were taken by unprofessional photographers.
There are extreme variations of appearances of garments in photos from this domain,
related to the quality of the picture, lighting, issue of indoor/outdoor environment,
shapes and sizes of people’s bodies, human pose, camera angle, occlusion characteristics
and whether a full head-to-toe picture is available [13]|. Variations of garment depictions

in street domain can be seen in Figure 2.10.

Full body Multiple shots Camera height/angle

Partial body ~ Natural Occlusions ~ Lower quality

Figure 2.10: Street domain photograph variations [13]
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Second type of images are shop photographs from online retail stores, depicting
fashion garments either on a person, on a mannequin or in isolation. Those photographs
were taken by professional photographers. Each individual garment might be linked
to many pictures depicting it from different views. Variations of garment depictions in
street domain can be seen in Figure 2.11. As we can see in the Figure, photographs in
the street domain differ greatly from the shop domain. Learning cross-domain mapping
is crucial to find a universal garment representation, which is the key issue in multi-task

learning [13].

Live model Partial body Close-up

&

. s

SN

Mannequin Non-frontal Single item

Figure 2.11: Shop domain photograph variations [13]

2.2 Categorization tasks

Categorization tasks are the most fundamental ones in visual fashion understanding.
Two main categorization tasks in VFU are garment’s category prediction and garment’s
attributes prediction. While categorization tasks might also be used as side tasks
in some of multi-task learning methods (described in Section 2.5), in this chapter I

describe solutions that focus solely on categorization.

2.2.1 Hierarchical modeling for multi-level categorization

Fashion industry is rapidly changing from season to season and over years. Therefore,
it is highly unpractical to manually label huge fashion datasets. To cope with that
problem, datasets usually use hierarchies of concepts to describe a fashion item (gar-
ment). A typical semantic structure of such hierarchy follows a following template:
category - e.g. trousers, sub-category - e.g. jeans trousers (optional, as not all datasets

use this additional categorization level), properties/attributes - e.g. high-waisted.
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Such hierarchical nature of garment characterization cannot be easily modeled by
standard convolutional neural networks, such as VGG [24] or ResNet [11], provided we
would like to include in the model information on how class at one certain level affects
classification chances of class at another level. One approach to go around this problem
would be to train separate models for each categorization level, using prediction outputs
from the higher-level model as an input of the lower-level model. However, it only
considers all variables as independent of each other and does not explore the known
structure of semantic concepts and information on how these concepts relate to each
other between their respective levels in the hierarchy. Schematic visualization of the
multiple-model take on the problem can be seen in Figure 2.12. Figure depicts scheme
of three models, where dresses, shoes and coats are modeled separately. Researchers
proposed a solution to the above-described problem, based on a custom neural network
structure, which leverages embeddings of hierarchical labels [7]. This approach aims
to model fashion items as a structured multi-level categorization task, which uses one
global model for the whole concept structure and is consistent with intuitive way of

analyzing visual fashion data.

! Dresses module - D Beach Dresses

Sleeve Length - Shortsleeved

Dress Silhouette - Fitted

Neckline - V Neck

VAVAVAVAVAY

Dress Length - Long

Categories
network

« Coats ™

! Double Breasted & Peacoats

| Subcategortes network e =
| :

1

¢ Coat Silhouette - Butfoned Up____>
‘il Body Length - Long >

Figure 2.12: Schematic visualization of the approach based on separate models [7]

The goal of the multi-level categorization task is to perform classification across
the whole structural tree and to predict classes for all levels. Visualization of working
principle of the task can be seen in Figure 2.13. Usually all annotation levels, besides
attributes, are exclusive to only one label. Therefore, main category and sub-category
classifications can be seen as a multi-class classification, while on an attribute level it
is a multi-label classification. Category can be inferred directly from sub-category (if

we know "jeans trousers' is the sub-category, we can be 100% sure that the general
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category is "trousers"), while same attributes can be linked to many garments across
many different high-level categories. Therefore, message passing connections, which
denote variable influences, are not fully symmetrical between all category levels [7], and
it follows the following rules: 1) Category’s influence on sub-category, 2) Category’s

influence on attribute, 3) No influence of sub-category on attribute.

Category: Dress, Top, Skirt?

Sub-Category: Day Dress,
Evening Dress?

Attributes:
Length: Short or Long?
Neckline: Round or Square?

Figure 2.13: Working principle for the multi-level categorization model in VFU [7]

Network description

The proposed unified model network structure for multi-level categorization problem,
proposed by Ferreira et al. [7], can be seen in Figure 2.14. First part of the network
is the ResNet-50 [11] CNN network, pretrained on the ImageNet [6], which extracts
visual features from fashion pictures. ResNet’s output then flows into three paralel

fully-connected layers, one for each level in the hierarchy.

|
[ H 1
00000000000 [=y ' 7| Category activation |7: - i

o
. i :
vl . 1
' . 1
[000000 % (00000000000 ]| [subcaregory rcswarion] ——— [ R |
bl !
L ' :
vl [ H
—{ 000000 F 00000000000 I!E—Eé—»l Attribute activation | T _ |
vl i H
i
Multi-layer : Dense layers for message i E Output Multi-layer i : i
|

perceptron for each : propagation across semantic ! ! perceptron + . Predictions
level ! ! Activation Ll

Figure 2.14: Unified multi-level categorization network structure [7]

The next module of the network, which is a message passing block, is the most im-
portant module of the whole network responsible for hierarchical modeling of concept
relations between levels. Message propagation connects only particular level layers.

Information which benefits one level of the connection could also benefit the other
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end, and the same rule applies in reverse - therefore, propagation of messages between
connected layers is bi-directional [7]. All layers in this module are dense, with L2
normalization being applied on them to decrease the over-fitting risk. Activation func-
tions are then applied to outputs of layers of message propagation modules: softmax
to multi-class classification for category and sub-category layers, sigmoid to multi-label
classification in attribute layers. At the end, predictions are made for three variable
levels, and based on them, cross-entropy loss functions are calculated for each level

separately.

Performance evaluation

Evaluation of the built network has been performed by comparing its results to other
solutions, such as separate baseline model or to a similar unified model, but without a
message passing module. The following metrics have been used used in the evaluation:
precision, recall and Fl-score. Comparison results can be seen in Table 2.4 (category
level), Table 2.5 (sub-category level) and Table 2.6 (attribute level).

Table 2.4: Evaluation results for category level; reproduced [7]

Method H Precision Recall Fl-score
Baseline 80.01 79.43 78.73
ResNet independent 82.77 82.65 82.65
Unified, no message passing 81.66 82.57 81.47
Hierarchical, message passing || 83.53 84.16 83.35

Table 2.5: Evaluation results for sub-category level; reproduced [7]

Method H Precision Recall F1l-score
ResNet independent 45.74 34.90 29.60
Unified, no message passing 42.03 34.21 29.20
Hierarchical, message passing | 42.68 37.00 29.39

Table 2.6: Evaluation results for attribute level; reproduced [7]

Method H Precision Recall F1l-score
ResNet independent 47.55 85.16 58.51
Unified, no message passing 47.17 84.51 58.04
Hierarchical, message passing | 49.22 86.75 60.60

As we can see in presented tables, for category level and attribute level predic-
tions, the described network outperforms the rival solutions. For sub-category level,

however, the results are comparable to other models or slightly worse. In summary, it
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can be concluded that the unified model, which learns from a hierarchy tree of concepts
and models relations between them, produces better results for typical categorization

VFU tasks, than a standard approach of separate modeling for each concept level [7].

2.3 Localization tasks

Development of visual fashion analysis field is linked to availability of high-quality fash-
ion datasets [19, 13], which opened up research possibilities in the field for tasks, such as
clothes recognition [12, 13] or retrieval [17, 19]. However, high-variance of clothes rep-
resentations in these datasets led to the challenge of precise garment localization, which
stems from pose variations and scaling issues [20] in available datasets. Researchers in
the field tried different approaches to capture clothing localizations in a more discrim-
inative way by introducing additional regional annotations, such as bounding boxes

[13, 12], general object proposals [13] or masks [15, 29].

2.3.1 Localization schemes

Liu et al. [20] performed an experiment where multiple models were trained on a
subset of DeepFashion [19] for tasks of attribute prediction and clothes retrieval. In
all of the models, foundational visual features were learned with the same off-the-shelf
CNN, as described in [25]. The only difference between models was the use of different
garment localization schemes. Authors compared different localization schemes popular
in the scientific literature. First presented scheme is based on full image and has no
garment localization annotation. Second scheme is bounding box [13, 12], with minimal
rectangle-sized area, which contains whole garment. Main challenge of bounding box is
related to false positive area allocation close to its corners and edges. Third scheme is
based on fashion landmarks. Fourth scheme is based on analysis of human body joints.
This scheme is similar to landmarks but the key points are defined as points localized

on body joints of a person wearing the analyzed garment.

Table 2.7: Top-5 attribute prediction recall rates for different garment localization schemes [20]

Recall rate

full image 0.27
bounding boxes 0.53

human body joints || 0.65
fashion landmarks | 0.73

For comparison between different localization schemes, the experimentation per-
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formed by Liu [20] uses top-5 recall rate for attribute prediction task (results can be
seen in Table 2.7) and top-k retrieval accuracy for clothing retrieval task. The re-
sults of experiment show that leveraging available landmarks helps with improving
performance on other VFU tasks: attribute prediction or clothing retrieval. It also
demonstrates that fashion landmarks are a better garment localization representation

than bounding boxes or human body joint estimations.

ng sleeve
dlong o

Figure 2.15: Difference between bounding boxes and landmarks, as shown in DeepFashion2 [8]

Landmarks (or fashion landmarks) are key location points situated in functional
regions of clothes, such as waistline, ankle, elbow or hem. Liu et al. [20] presented
landmarks, as a novel, more discriminative representation for localization properties
of fashion garments. Improvement in discriminative abilities is possible thanks to
landmarks’ key features. Firstly, landmarks capture localization more precisely than
bounding boxes.

Difference between bounding boxes and landmarks, as shown in DeepFashion2
[8], is depicted in Figure 2.15. As we can deduct from the Figure, landmarks im-
prove on problem of bounding boxes related to false positive area allocation. Secondly,
landmarks, as regional key points on clothing, introduce additional information on key
points. Analysis of key points provides improvements when learning features for VFU

tasks, as many essential visual patterns are located in regions around these key points.
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2.3.2 Fashion grammars for landmark prediction

Many papers treat visual fashion analysis as just another possible use case for com-
puter vision methods, and therefore do not try to introduce additional human knowl-
edge about visual clothing problem characteristics. Wang [27] introduces a new model
with high-level knowledge in the domain, called a fashion grammar model, aimed at
improving performance in fashion landmark prediction sub-problem.

Grammar models aim to inject domain-specific knowledge, such as dependencies
between elements, which typically would not be included in the training dataset it-
self. Use of grammar models is convenient when we try to model complex structures
with rich annotations, and try to tackle the problem of local ambiguities. Fashion
grammar describes kinematic and symmetric relations between landmarks on clothes
in pictures. These relations are used to predict a confidence map of positional distribu-
tion (heatmap) for each landmark. Wang [27] argues that use of these heatmaps, which
are essentially probability distributions of a landmark location, give a more detailed
landmark estimation than a direct vector prediction, because of non-linear nature of

pose estimation.

Kinematics grammar

Kinematics grammar describes kinematic relations between different parts of a garment,
so that particular clothing landmarks are connected in a way that satisfies human
anatomy constraints. There are four kinematic relations in the described grammar
[27]: 1) Left collar - left waistline - left hem, 2) Left collar - left sleeve, 3) Right collar
- right waistline - right hem, 4) Right collar - right sleeve.

Symmetry grammar

Symmetry grammar describes symmetry property of garments, as left and right side
of a clothing piece ought to mirror each other. There are four symmetrical relations in
the described grammar [27]: 1) Left collar - right collar, 2) Left sleeve - right sleeve,
3) Left waistline - right waistline, 4) Left hem - right hem.

Performance evaluation

Grammars’ influence on prediction model performance can be evaluated using a differ-
ence of cost function values between model baseline and models with grammar modules.
Model baseline does not incorporate any high-level knowledge and has no grammar
module. Wang [27] uses normalized error to evaluate effectiveness of introducing dif-

ferent combinations of grammar modules.
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Table 2.8: Fashion grammar effectiveness; reproduced [27]

Method | Normalized error (NE) on DeepFashion [19] NE on FLD [20]
Without any fashion grammar 0.0615 0.0681
Just with kinematics grammar 0.0538 0.0641
Just with symmetry grammar 0.0525 0.0659
Symmetry and kinematics grammars || 0.0484 0.0583

Results of performing this effectiveness evaluation can be seen in Table 2.8. As
we can see in the Table, both kinematic and symmetry grammars positively contribute
to model’s overall performance, while being tested on DeepFashion [19] and Fashion
Landmark Detection [20] datasets. Therefore, we can conclude that including these
grammar modules improves CNN-based network’s prediction performance for fashion

landmark prediction task [27].

2.3.3 Segmentation and detection in VFU

While introduction of new, massive, highly granular fashion-dedicated datasets, such
as DeepFashion [19], drastically improved fashion understanding in tasks such as at-
tribute prediction or retrieval, those datasets only consisted of images with image-level
annotations. Lack of pixel-level annotations (masks) makes it impossible to achieve
high performance on tasks of clothing segmentation and detection. In order to address
challenges of automatic detection and segmentation of clothing garments, subsequent
published work in the field [12, 29] made contributions of pixel-annotated datasets.
Localization-based tasks of segmentation and detection in the VFU domain dif-
fer from classification-type (item category prediction, item attribute prediction) and
retrieval-type (in-shop, consumer-to-shop) tasks, in terms of applicability of universal
state-of-the-art computer vision algorithms. Specificity of the fashion domain makes
categorization tasks in the VFU field a much more difficult problem than typical image
classification problems that can be trained on ImageNet [6]. That is not the case in
segmentation and detection tasks. In fashion item detection and segmentation, uni-
versally acclaimed algorithms for those tasks can be used as out-of-the-box solutions
and still provide great performance [33] in VFU. State-of-the-art algorithms for object
detection, such as Faster RCNN, YOLO or SSD [23, 22, 18] can be applied to clothing
item detection. State-of-the-art methods designed for semantic segmentation, such as
DeepLab or CRFasRNN [4, 32] can be applied to clothing item segmentation. It is

outside of the scope of this work to describe the mentioned algorithms in detail.
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2.4 Retrieval tasks

Retrieval in VFU focuses on finding similar pieces of clothing in a database, based on
a visual query. Such search can be a task in itself or it can be used as an internal
module in solutions dedicated to other tasks. In this chapter, I describe issues related
to retrieval tasks in VFU.

As an example, one possible application of an VFU retrieval algorithm is finding
exact garments. That example is portrayed in Figure 2.16. In this example, algorithm

has been trained on Exact Street2Shop dataset, which was described in Section 2.1.9.
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Figure 2.16: Possible retrieval results from Exact Street2Shop [13]

2.4.1 Bridging the gap between street and shop domains

Clothing companies and online retailers are actively looking to provide new services to
their clients that would change the way they shop for clothes. One such use case relates
to the client’s need to find a garment in an online clothing store that is similar or even
exact to the garment he/she saw on the picture. Technical solution to this problem
requires a system that would take a fashion image from the domain of unprofessional
photographs (street pictures, selfies, social media images) as input and output the
image of the most relevant searched-for clothing item in the domain of professional
pictures from online stores. Such problem of finding cross-domain mappings is an

example of retrieval in VFU. Retrieval methods are a popular problem in the industry
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and one of the most researched ones in computer vision. However, traditional CV
retrieval methods such as Fisher Vectors, cannot be used in VFU, because of large
discrepancy in the fashion data [13].

In fashion context, our images mainly come from 2 distinct domains. First domain
is street/consumer /unprofessional domain, where fashion pictures being taken outside
of professional studio setting. These pictures can be considered as real-world exam-
ples, taken in an uncontrolled setting. Second domain is shop/commercial /professional
domain, where fashion pictures are being taken inside the professional studio. These
pictures typically have clean backgrounds, more neutral human body poses and better
lightening than those from the street domain [13].

Bridging the gap between those two domains is the main challenge for retrieval
methods in VFU. Challenges stem from domain differences, such as significant appear-
ance variance of garments between domains. Visual clothing features in images are
deformable and highly variant between examples, which is another major challenge in
retrieval tasks. One approach to bridging this gap is a retrieval method based on body
parts allignment [17]. However, a much more accurate method is based on finding a
similarity measure between garments in different domains. A deep similarity measure
is used by Kiapour et al. [13] which introduces a VFU task in which the aim is to find
not just a similar, but exact clothing item in the other domain.

In order to find the universal, domain-independent representations for clothing
items, it is not enough that we train models using examples from both domains, but
we also need to learn the cross-domain representation. Otherwise, our models would
only learn domain-specific features which would not be transferable to different do-
mains, therefore decreasing algorithm’s performance. This is the problem of domain
adaptation, in which the algorithms is trained to learn a transformation function that

maps examples from different domains into one feature space.

2.5 Multi-task learning approaches

In many research papers, scientists use the same neural architecture to predict multiple
VFU tasks at once [26, 16, 33, 13]. This approach is called multi-task learning and is
based on learning clothing representations jointly across many sub-problems.

One example of using such approach to learning clothing features is FashionNet
algorithm [19], which uses landmark-based features to help with prediction of attributes
and categories. The algorithm simultaneously optimizes loss functions for landmark
localization, landmark visibility, garment category and pairwise metric. Sharing fea-
tures between tasks helps with better prediction performance, e.g. information about

landmark location can be used to create better local representations and therefore, also



2.5. MULTI-TASK LEARNING APPROACHES 27

improve categories prediction.

2.5.1 Landmark pooling

Introduction of massive and fine-grained datasets for visual fashion, such as DeepFash-
ion [19] opened possibilities for researchers to try to predict values across different
sub-problems jointly. One such approach, called FashionNet, is proposed by same au-
thors [19]. Landmark pooling is a key mechanism described in FashionNet model [19].
The general idea of the algorithm is to utilize information about landmarks in order
to learn more discriminative features for other tasks, such as category and attribute

prediction.
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Figure 2.17: Branch structure in FashionNet [19]

FashionNet is built on top of VGG-16 neural network, a popular CNN network
for automatic visual features learning in computer vision. Features learned by a VGG-
16 output layer can be used as inputs for three-branched neural structure, designed
specifically for joint learning in clothes domain. Outputs of these three branches, which
focus on different tasks, are then combined to jointly learn features across tasks through
passing information between branches. Three branches, whose structure can be seen in
Figure 2.17, account for learning different tasks. Firstly, blue branch learns landmarks’
feature maps: location and visibility. Secondly, orange branch learns global features,
through additional convolution of features learned with VGG-16. Thirdly, green branch
learns local features, through pooling over the previously-learned landmark from the
blue branch [19].
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Figure 2.18: Landmark pooling layer in FashionNet [19]

First, the blue branch predicts landmarks’ location and visibility. Then, inside
the green branch the max-pooling aggregation process is performed around predicted
landmarks, using feature maps learned previously by VGG-16 CNN. This pooling op-
eration is depicted in Figure 2.18 and it leads to creation of new cross-task influenced
feature maps. Landmark pooling layer performs max-pooling of local features around
predicted landmarks to learn local feature maps, which are later used in final prediction
tasks [19]. Weights of the landmarks that were not predicted are gated. Concatenation
of local features allows for modeling the interaction between landmark points. These
additionally learned local features are crucial, as they allow for more discriminative
model representation, when the training dataset includes pictures with deformations
or occlusions, which typically is the case in real-world scenarios.

Orange and green branch are combined afterwards, in order to jointly predict cate-
gory, attributes and cross-domain metric (consumer-shop relationship for same clothing
piece on pictures in different domains) [19]. These predictions are affected by cross-
task information passing, thanks to which landmarks and attributes are learned jointly.
This approach is viable as tasks of landmark recognition and category /attribute/cross-
domain metric are correlated. Therefore, using localization-based landmark keypoints
can help in more accurate prediction in categorization tasks as well.

In practice, joint learning comes down to simultaneous optimization of multiple
loss functions at once. FashionNet [19] also uses that concept. The solution network
first calculates L2 loss in order to find landmarks. Using predicted values, one-versus-
all softmax loss is calculated in order to classify categories. Next, cross-entropy loss
is used for attributes prediction. Lastly, the cross-domain triplet loss aims to learn

clothing pairs relationship.

Performance evaluation

The effectiveness of landmark pooling method described in FashionNet [19], can be

evaluated by comparison to other neural solutions, that showed good results for the
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same visual fashion tasks, namely WTBI [13] and DARN [12]. Both of them have been
trained on the same dataset as FashionNet - DeepFashion [19]. WTBI and DARN do
not employ cross-task landmark pooling technique.

Category prediction can be evaluated using top-k accuracy metric. As we can see
in Table 2.9, FashionNet with landmark pooling layer outperforms both DARN and
WTBI significantly in category prediction. We can also notice that fine-grained, rich

attributes are essential in driving the model’s accuracy [19].

Table 2.9: Category and attribute prediction accuracy comparison between FashionNet [19], WTBI
[13] and DARN [12]; reproduced [19]

| FashionNet [19] WTBI [13] DARN [12]

Top-3 category 82.58 43.73 59.48
Top-3 attribute Texture || 37.46 24.21 36.15
Top-3 attribute Fabric 39.30 25.38 36.64
Top-3 attribute Shape 39.47 23.39 35.89
Top-3 attribute Part 44.13 26.31 39.17
Top-3 attribute Style 66.43 49.85 66.11
Top-3 attribute (all) 45.52 27.46 42.35

Table 2.9 also shows comparison results for attribute prediction. FashionNet’s
performance on this task is also significantly better compared to other solutions. Espe-
cially great results are obtained for attributes in groups describing "shape" and "part".
Attributes from those groups are usually described by information around landmarks.
Therefore, we can conclude that local features, found thanks to landmark pooling layer,
directly contribute to more accurate attribute prediction. FashionNet also outperforms
DARN [12] and WTBI [13] in retrieval for both consumer-to-shop and in-shop scenarios
[19]. We can conclude that FashionNet achieves higher accuracy than its competitors
thanks to advantages of using landmarks-based feature pooling, which boosts perfor-

mance across tasks.

2.5.2 Attention mechanism in VFU

Attention mechanism in neural network aims at selectively focusing on a few important
aspects, while ignoring others. It was one of the biggest breakthroughs in deep learning
research in the last decade. Attention is mainly used in natural language processing,
but there were a few successful applications in computer vision as well, such as Visual
Question Answering (VQA) or image captioning [27]. In the context of classification
tasks, attention modules are effective in helping the network to learn which are the

relevant picture regions "it should look at" and which regions should be ignored.
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Wang [27] claims that no attention mechanisms had been used for solving any vi-
sual fashion understanding problem before his proposal. Attention mechanisms are in-
troduced in order to help improve fashion category and attribute classification, through
making clothes representations more robust as well as to leave out information which
are not relevant to the prediction task. Wang introduces two types of attention mech-
anisms in his model: fashion landmark-aware attention and clothing category-driven

attention.

Landmark-aware attention

First introduced attention mechanism is a landmark-aware attention, which uses land-
marks property of having strong representation capability. Landmark-aware attention
enforces that network focuses on functional parts of clothes. Attention is learned in a
supervised way. That attention generates landmark-aligned features, which allows for

the model to capture the significance of regions which are semantically richer [27].

Category-driven attention

Taking into account functional regions may not be enough to correctly classify at-
tributes if their granularity is fine. That is why another attention mechanism was
introduced: a category-driven attention. That attention is goal-driven and can be
trained to enhance features related to the classification task at hand, which might lead
to better performance [27]. Category-driven attention mechanism focuses on picture

areas relevant to predicting particular category or attribute.

Performance evaluation

Influence of attention mechanisms on classification model performance can be evaluated
using a difference of accuracy and recall between model baseline and models with
attention mechanisms that enhance landmark-aligned and category-related features.

Model baseline does not include any attention mechanism [27].

Table 2.10: Attention mechanisms effectiveness; reproduced [27]

Method H Top-3 cat. acc. Top-5 cat. acc. Top-3 attr. acc. Top-5 attr. acc.
Baseline, without any attention 83.23 89.51 43.28 53.54
Just with landmark-aware attention || 87.75 93.67 49.93 58.78
Just with category-driven attention || 85.27 91.32 48.29 56.65
With both attention modules 90.99 95.78 51.53 60.95

Results of performing this effectiveness evaluation can be seen in Table 2.10. Met-

rics are shown for top-3 and top-5 accuracy for both category and attribute prediction.
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As we can see in the Table, models with attention produce better results than baseline
models. Therefore, we can conclude that including these attention mechanism modules
improves CNN-based network’s prediction performance for category classification and

attribute prediction.

2.5.3 Upsampling feature maps for improved attention

This Section builds up on the information included in Section 2.5.2. The method
described here aims to improve landmark-driven attention, above the performance of
standard attention, described earlier. Liu et al. [16] argues that majority of methods
aiming to improve prediction accuracy of landmarks (more about landmarks in Sec-
tion 2.3.1) do not succeed, because of the fact that resolution of predicted landmark
heatmaps is too low. A reason for that is the usage of full CNNs with pooling layers,
which downsample the output. That causes the issue of decreased accuracy for related
VFU tasks, because landmarks are commonly located in "difficult" areas of the picture,
such as corners, which is another reason of the mentioned problem. One example of
such situation where there are multiple pooling operations involved, which downsample
landmark heatmaps, is the solution described in Section 2.5.2 [27].

Authors propose a new solution [16] based on transposed convolutional opera-
tions, which upsample feature maps. Those operations lead to heatmaps of higher
resolution, which have the same size as input training pictures, and that subsequently
leads to better performance for the VFU task of landmark localization. The predicted
landmark heatmap can be used in order to help with another task of category and
attribute classification, by introducing landmark-driven attention mechanisms. Such
attention mechanism enables the network to selectively focus only on the most impor-
tant regions of the picture (more about landmark-based attention in Section 2.5.2),
from the perspective of the category/attribute prediction problem. Element of an at-
tention mechanism, which allows for that is the attention map, which combines both
local-oriented landmark location properties with global-oriented visual features learned
by convolutional layers. All the most task-related information is leveraged, while non-
important features are discarded, which eventually leads to higher prediction accuracy
for tasks.

The proposed solution [16], which aims to improve category and attribute classi-
fication accuracy in visual fashion understanding, consists of two parts. First part is
upsampling of landmark feature maps, through transposed convolutional layers. Second
part is using generated landmark heatmaps in an attention mechanism, which strength-
ens or limits learned visual features. There is only one, global attention mechanism, as

opposed to two separate attention mechanisms in solution described in Section 2.5.2.
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Separate attention branches lead to putting hard constraints on feature selection, while
unified attention is considered a soft constraint, which boosts important features in a

more natural way and can be learned more efficiently.

Network description

As we can see in Figure 2.19, the network consists of a VGG-16-based foundation,
which is a standard CNN network, used here for extracting visual features. On top
of those layers, there are two separate branches, designed to focus on their own tasks:
landmark localization branch and attention branch. First, in a landmark localization
branch, multiple transposed convolution operations perform the upsampling, until the
point where heatmaps for all landmarks are of the input size [16]. At the end of the

branch, L2 loss is calculated and landmark predictions are generated.
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Figure 2.19: Upsampling-boosted attention network [16]

Next, output of the landmark localization branch is concatenated with features
from the foundational VGG-16 network, and passed to the attention branch, where
data is passed through two sets of convolutions and pooling layers [16]. Afterwards,
a transposed convolution is performed and the output of the attention branch is then
multiplied element-wise again, with the output of the first VGG-16 net. Landmark-
driven attention allows for new way of understanding the VGG-16 features, where if
the output of the concatenation is below 1 - features will be reduced according to
the calculated weight, while if the concatenation value is above 1 - features will be
enhanced, in order to account for importance of those features around the landmark.
Next, the information is passed through multiple VGG-16 networks and lastly, spread
into two final branches for category and attribute tasks, where cross entropy loss is

calculated and final predictions are performed.
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Figure 2.20: Attention maps visualization [16]

Figure 2.20 depicts attention maps visualization with pixel-wise activations for
example pictures from DeepFashion [19] dataset. We can observe how areas of pictures

around landmarks are enhanced, while data in useless regions is filtered out.

Performance evaluation

Performance of the above-described network [16] was evaluated on DeepFashion bench-
mark for category and attribute prediction, which is described in detail in Section 2.1.2.
Metrics for evaluation were chosen as follows: top-k accuracy for category classifica-
tion, top-k recall for attribute prediction, normalized distance between landmarks for
landmark localization. The results of the upsampling-boosted landmark-driven atten-
tion network were compared to recent deep learning-based solutions for the same VFU
problems. For both categorization and localization tasks, the network proposed by Liu
et al. [16] outperforms its rivals and achieves what can be considered state-of-the-art

prediction performance.

2.5.4 Attribute-aware retrieval feature learning

Huang et al. [12] proposed a solution to the problem of cross-domain image retrieval,
by introducing a DARN network (not to be confused with DARN dataset described
in 2.1.7). The specific addressed problem, tackled by DARN is, being given a fashion
photograph in the street domain, to retrieve garments, which are the same or closely
similar in the shop domain. Such definition of a VFU retrieval task resembles practical
applications, as usually shoppers would look to find a concrete item in store, while
knowing already how it looks in real-life street picture. The system was trained on
DARN dataset (described in Section 2.1.7) which is a large cross-domain garment
dataset. Depiction of how the system works is presented in Figure 2.21, which shows

examples of street-to-shop domain retrieval.
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(a) Query Image (b) Top-6 Retrieval Results

Figure 2.21: Cross-domain retrieval examples [12]

DARN, which stands for Dual Attribute-aware Ranking Network, is a neural
network, which is designed for retrieval feature learning [12], based on visual features
describing semantic attributes of clothing items. DARN network consists of two sub-
networks, which are very similar in their design. Each of the sub-networks is designed
to handle data coming from one, specific domain, either online (shop/commercial) or
offline (street/consumer). Pair data from different domains is processed simultaneously
in both sub-networks. Separate processing of data from different domains allows for
learning characteristics of each domain and therefore decrease the discrepancy between
them. Both sub-networks are attribute-aware, which means that human-level knowl-
edge about attributes is leveraged in order to improve algorithm’s visual understanding.
This simultaneous contribution of fine-grained attribute knowledge and visual similar-
ity constraints results in powerful network, which combines both semantic and visual

understanding.
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Network description
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Figure 2.22: DARN network structure [12]

Figure 2.22 presents the structure of the DARN network. As we can see, there are two
separate sub-networks in DARN [12]. Each network has, at its bottom, five convolu-
tional layers, with some of the layers using additional max pooling. Weights of these
low-level layers are shared across all attribute categories in each domain, and used
in order to learn visual features characteristic to each domain. These low-level layers
are followed by two dense layers. Then, on top of that network, tree-structure layers
for modeling attributes are placed, where each branch is responsible for one specific
attribute. These high-level layers aim to capture semantic meaning of attributes. The
FC2 output (see Figure 2.22) is sent to all the following branches, which learn semantic
attributes on their own. This weight sharing to tree-structure layers from lower layers
is what allows DARN to effectively combine both visual and semantic features. Both
sub-networks learn to produce outputs, which can be compared between each other,

and therefore used as a measure of cross-domain similarity.

Performance evaluation

Huang [12] argues that incorporation of attribute-driven learning module is the key
mechanism that contributes to improvement of accuracy in clothing item retrieval
task. Six examples of top-b retrieval can be seen in Figure 2.23, with query image
being shown on the left side of each row and top-5 results being shown on the right

side. Best retrieved element is additionally highlighted with a green frame. As we
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can see from the Figure, the network has been able to successfully retrieve from the

opposite domain, items which are very similar to the ones from query.
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Figure 2.24: Top-k retrieval metrics [12]

A comparison study has been performed to measure and evaluate performance of
DARN algorithm, as related to other popular methods in the literature. The results
of the study can be seen in Figure 2.24. Top-k retrieval accuracy has been used as
a comparison metric. As we can see in the Figure, DARN network outperforms all
the other methods, including traditional CNN pretrained on AlexNet dataset or ARN,
which is the similar attribute-aware network, which uses only 1 channel for processing
images and does not have the dual nature described in this subchapter. Based on the
study we can conclude that performance of an algorithm for cross-domain retrieval in

visual fashion understanding increases with: introduction of sub-networks, introduction
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of additional semantic knowledge about attributes and separate processing of data

according to the domain from which it comes from [12].

2.5.5 Localization-aided attribute representation learning

Cross-domain retrieval is one of the most important problems in VFU. While many
papers have been proposed on this subject [17, 13|, challenges remain for situations,
where there are multiple attributes of clothes present, or where there is a need for
attribute manipulation, which requires finding precise features that represent just the
analyzed attribute. Some researchers tried to tackle such problems by crossing visual
features of the query fashion image with the searched attribute representation [31].

Those methods, however, do not focus on leveraging localization properties for
representing attributes, which is essential for determining which parts of the image are
"responsible’ for which attributes. DARN paper’s authors [12] explored localization-
aided attribute prediction and their method used bounding boxes annotations. While
DARN’s approach has been helpful in pushing the VFU field forward, in order to apply
it to real-life solution, it would require each picture, which we are trying to make an
inference for, to have fully annotated boxes for all of its attributes. However, it is
very hard to annotate bounding boxes for every attribute and it is desirable for VFU
computer vision algorithms to be able to deal with multiple attributes in a weakly
supervised manner. FashionSearchNet takes such approach, where only meta-level
image annotations are given and attribute activation maps are found by attention
mechanism [2]. This method is called attribute representation learning, and enables
region-specific attribute manipulation by removing some local aspects of the unwanted
features.

Authors of FashionSearchNet [2] argue that in order to be able to perform exten-
sive visual search and retrieval in the VFU area, there is a strong need for similarity
learning, which would leverage information across tasks to find universal representa-
tions. Authors use weakly supervised localization-based learning and region-specific
awareness, in order to find distinctive, representative features separately for each at-
tribute. By localizing towards attributes, algorithm can find more accurate, area-

specific attribute features and discard redundant data.
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Figure 2.25: Atrribute manipulation application of FashionSearchNet [2]

Figure 2.25 shows FashionSearchNet’s [2] application examples for attribute ma-
nipulation. In the first example, whole garment color was changed to beige and the
collar was changed to hood. In the second example, just torso color changed. However,
because of the fact that no garment with fully red torso was found in the used dataset,
the most similar ones were returned. This example shows the importance of similarity
learning. Authors argue that no other published method is able to perform such precise

and intuitively-understood region-specific manipulations.
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Figure 2.26: Neural architecture of FashionSearchNet [2]

Graphic depicting the neural architecture of FashionSearchNet [2] can be seen in
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Figure 2.26. Firstly, input image is passed through 7 convolutional layers, which extract
visual features. Then, global average pooling layer (GAP) is used as a helping layer
for generating attribute activation maps (AAMs). These AAMs are a key mechanism,
which allows for training in weakly supervised manner, just by providing meta-level
attribute annotations, without any localization definitions. Additional examples of
AAMs are shown in Figure 2.27 and Figure 2.28. In Figure 2.27, we can see different
activation maps for different types of attributes. Also, different values of the same

attribute type will produce slightly different AAMs, as can be seen in Figure 2.28.
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Figure 2.27: Activation maps for different types of attributes [2]
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Figure 2.28: Activation maps for different values of the same attribute type [2]

AAMs are then used to estimate regions of interest, which is the strength of cor-
relation between a particular area of image and its influence on attribute. Such regions
of interest allow for representing attribute with its localization-based features and helps
with more efficient representation learning, as some attributes are more heavily present
only in certain areas [2]. This, in turn, leads to abandoning redundant features, which
happens during the pooling operation of features from fifth convolutional layer over
extracted regions of interest. Pooled features are feeded into a series of dense layers.
Then, representations for features are learned, as well as similarity learning losses are
calculated. At the very end, all found representations are concatenated and form a final
joint representation, which can be used for search and retrieval. Search is performed
through calculating global ranking loss, which penalizes features that should contribute
less to the final search results. Also, having learned precise attribute representations,
we can now modify certain variables to change some aspects of the attribute (such as

torso color in Figure 2.25).

Performance evaluation

Authors of [2] present results of their novel FashionSearchNet by comparing its results
to other algorithms in the field. FashionSearchNet’s performance on DeepFashion
dataset for the task of search by query is similar to other methods, as measured by

top-k retrieval accuracy. However, its top-k accuracy for the task of retrieval by query
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and attribute manipulation, as measured on DeepFashion benchmark, outperforms

other methods significantly [2].






3. My implementation

Having surveyed most important datasets and solutions in visual fashion understanding
field, in this chapter I present the actual novel contribution of this work. I describe the
research angle and details of implementation, as well as present results of experiments

and evaluate correctness of my hypothesis.

3.1 Research angle

Multi-task learning is an approach in machine learning, where a model learns to opti-
mize loss functions for multiple tasks at the same time. Features/representations are
passed between task-specific branches, which leads to knowledge sharing between tasks.
Presumption is that if tasks are related, we can benefit from sharing representations
and obtain better performance, than if we tried to optimize those tasks with sepa-
rate models. Basic diagram showing a general framework of multi-task architecture
can be seen in Figure 3.1. After surveying major solutions in the research literature
in Chapter 2, I conclude that multi-task deep learning approach is used in majority
of state-of-the-art methods in the VFU field. Those methods have been described in
Section 2.5.

Task Al [Task B| [Task C| Task-
f 1 i specific
layers

Shared
layers

Figure 3.1: General framework of multi-task learning [1]
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Traditional definition of generalization in machine learning context is that it’s
the model’s property of being able to perform well not just on training set, but also
on never-seen-before training set, so that it’s able to learn important properties of
the whole distribution, without learning noise in the dataset. As artificial intelligence
research moves forwards, some researchers, such as Zhang et al. [30] argued for rethink-
ing definition of generalization in ML. While, obviously, Al models cannot generalize
outside of the training data distribution, ideally we would like AT models to exhibit
human-like intelligence and be effective in as broad of a discipline as possible. I believe
that a good way of thinking about generalization property of a model is how broad
and intuitive understanding it has of the larger field of its interest domain.

I believe that VFU tasks are related to each other and building multi-task learning
models can be beneficial for improving generalization across visual fashion understand-
ing field. In order to validate my hypothesis, I performed experimental analysis that
I describe in this chapter. I built two deep learning solutions designed primarily for
VFU categorization tasks of category and attribute prediction. First solution uses the
multi-task learning approach and shares features from localization branch, which is
designed to predict landmarks, to categorization branch. Second solution is designed
just for categorization tasks (only one categorization branch). I evaluate category pre-
diction accuracy and attributes recall metrics from both solutions, and assess whether
knowledge sharing between branches contributes to improved metrics and therefore

generalization ability across wider visual fashion understanding domain.

3.2 Implementation details

As mentioned in the previous section, I built two deep learning based VFU solutions.
First method has both localization branch (for landmark prediction) and categorization
branch (for prediction of garment’s category and attributes). This method will be
called MTL, because it uses multi-task learning approach for landmark, category and
attribute prediction with knowledge sharing from localization branch to categorization
branch. Second solution has just categorization branch for category and attribute
prediction and will be called CAT. As a side note, optimizing 2 loss functions for
category and attribute prediction in CAT method could also be considered a multi-
task learning. However, those tasks are so highly related that it would not make any
sense to ever have them separated. I am interested in finding out what are results of
passing knowledge between tasks, which are logically unrelated, such as categorization
(described in Section 2.2) and localization (described in Section 2.3).

Both solutions were implemented in PyTorch. They were trained using DeepFash-

ion dataset [19], which have been described thoroughly in Section 2.1.1. Each image
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has annotations for only one main garment in the picture. That garment’s localization
in a picture is annotated with a bounding box. Each garment can have only 1 out of
48 possible categories. Each garment is labeled with true/false annotation for each of
1000 possible attributes. Attributes are also assigned into 1 of 5 possible type groups:
texture, fabric, shape, part, style. Garments also have landmark location labels (each
landmark is a point, with x and y position) for each of 4-8 possible landmarks. Amount
of landmarks depends on garment’s category type. Main landmarks are: left and right
collar, left and right sleeve, left and right hem, left and right waistline. Each landmark
is also labeled with its visibility metric. Examples of landmark annotations can be seen
in Figure 2.1 in Section 2.1.1, where I described whole DeepFashion dataset in detail.
Additional operations has been applied to the dataset, such as random cropping and

flipping. Before training all images have been rescaled to (224, 224) shape.

3.2.1 MTL implementation

The MTL implementation has been inspired by two novel solutions I have found in
the VFU literature. First of those solutions comes from paper Attentive Fashion
Grammar Network for Fashion Landmark Detection and Clothing Cate-
gory Classification by Wang et al. [27], which has been described in Section 2.5.2.
Idea of landmark-aware attention has been described in that paper, and I decided to
also implement a similar concept in my solution. Second literature solution I have
based my implementation on is paper Deep Fashion Analysis with Feature Map
Upsampling and Landmark-driven Attention by Liu et al. [16], which has been
described in Section 2.5.3. Ideas of passing feature representation between localization-
dedicated branch and categorization-dedicated branch and feature maps upsampling
have been described in that paper, and I also use those concepts in my own implemen-
tation. VGG-16 [24] CNN network has been used as a main tool for visual features

extraction in both papers, and that is also the case in my solution.
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Figure 3.2: Neural architecture of MTL implementation
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Neural architecture of MTL implementation can be seen in Figure 3.2. The
graphic visualizes flow of data through the network in feed-forward pass. It might be
helpful to follow the Figure 3.2, while I describe the network in detail in subsequent
paragraphs.

Tensor dimensions for a single input image are provided at output of each module.
I trained my network using a mini-batch approach with 8 images in each batch. All
loss functions in this network are optimized with Adam algorithm [14] with adaptable
learning rate.

Each input image is of (3, 224, 224) dimension and uses RGB color coding. It is
passed through a large VGG-16 CNN network with 32 convolutional layers. Generated
output is of (512, 28, 28) shape and contains aggregated visual features of the input
coded into 512 feature maps. Then this representation is passed to a localization
branch, which focuses on finding landmark maps (average position for each landmark),
and making predictions about landmark location, based on those maps. In order to
find those landmark maps, in the localization branch information is passed through
a series of seven modules: four of them are convolutional layers and three of them
are transposed convolutional layers. Transposed convolutional layers aim to upsample
feature maps so that output maps are of the same shape as input images, and therefore
can be understood in a pixel-wise manner. If a garment has all eight landmarks then
a (8, 224, 224) feature map is generated. Landmark position is predicted as the most
probable (x, y) pair. Then a difference between our prediction and actual landmark
location is calculated by mean-squared error (MSE) loss. MSE loss calculates average
squared difference between predicted and label pixel localization (landmarks’ distance
metrics) over both x and y axis. The MSE loss function is shown in Equation 3.1. After
the feed-forward pass, error is backpropagated and modules’ weights in localization

branch are updated.

MSE = 5 33— )" + (=) (31)
i—

Landmark maps are downsampled and channel-wise concatenated with the large
VGG-16 output. This representation will be later passed down to categorization
branch. The concatenation is precisely where the information sharing between local-
ization and categorization branch happens. Concatenated tensor is passed to attention
module, which uses landmark map to magnify feature values around assumed landmark
positions and minify those further away from those positions. Because of the fact that
landmarks are crucially important points on a garment, we assume that enhancing
features around them will lead to better sharing knowledge from localization branch

to categorization branch. Attention is the key mechanism that allows us to pass the
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knowledge more effectively. While it would still be possible to pass landmark map
representations directly to the categorization branch, ability to use attention module
allows network to find significant regions and that enhances network’s ability to lever-
age localization-based knowledge in other tasks. At the same time, attention is a very
powerful neural module which can have a dominant effect on algorithm’s performance.
Goal of my work is to investigate effect of feature sharing between tasks and using many
attention modules could lead to performance improvement that cannot be attributed
to feature sharing itself but rather to attention. Therefore I decided to use only one
attention module, as opposed to a solution of Liu [16], which used as many as four
attention modules.

In next stage, information flows into categorization branch. Output tensor from
the attention module is multiplied with output of large VGG-16. Then information
is max-pooled in order to reduce dimensionality. Visual features are then extracted
through a new, small VGG-16 CNN with three convolutional layers. Next, multi-
dimensional tensor is flattened and directed to two separate branches, each responsible
for either category or attributes prediction. In both mini-branches there are two densely
connected layers. First dense layer has a ReLLU activation in both mini-branches, while
second dense layer has softmax activation in category branch and multiple sigmoid
activations in attributes branch. Afterwards category and attributes are predicted. For
category output can be understood as a probability distribution over all 48 possible
classes. For attributes we can observe separate 0-1 probability values for all 1000
possible attributes. Then, for both category and attribute prediction tasks, a difference
is calculated between prediction and the actual label by cross-entropy (CE) loss. The
CE loss function is shown in Equation 3.2. Errors are then back-propagated and
weights in the branch are updated. I use accuracy as a performance metric for category

prediction and recall for attributes prediction.

C

N
Z yl] * log( Dij ) (3.2)
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N

MTL training results

Network has been trained over 10 epochs. After each epoch, metrics of algorithm’s
performance for tasks of category, attribute and landmark prediction were calculated
on a testing set that had not been used in training at this particular epoch. Those
metrics are shown on diagrams I present below. I decided to use top-3 category accuracy
as a performance metric for category prediction, top-3 recall for attributes’ prediction

and landmark’s average distance for landmark position prediction.
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Figure 3.3: MTL’s category loss over 10 epochs
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Figure 3.4: MTL’s top-3 category accuracy over 10 epochs

In Figure 3.3, we can see a plot of loss for category prediction task over 10 epochs
of training. Each value represents cross-entropy loss value for each mini-batch of size
8. After first 3 epochs, category loss dropped to a value of around 0. With exception of
a few batches, that situation did not change much until the end of training. In Figure
3.4, we can see a plot of top-3 category accuracy over 10 epochs. During first 3 epochs,
top-3 accuracy, as evaluated on a test set, was growing and reached it’s maximum of
0.8605 after epoch 3. Analyzing those two plots jointly, we can conclude that only
during first 3 epochs network was learning valuable general knowledge. Early stopping

technique after third epoch was performed to obtain the best-possible model.
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ATTRIBUTE LOSS
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Figure 3.5: MTL’s attribute loss over 10 epochs
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Figure 3.6: MTL’s top-3 attributes’ recall over 10 epochs

Table 3.1: Top-3 recall values per attribute type group

” Top-3 recall

Texture || 0.5298
Fabric 0.4359
Shape 0.5528
Part 0.4677
Style 0.3169

Next, in Figure 3.5 we can see a plot of loss for attributes’ prediction task over 10

epochs of training. Each value represents cross-entropy loss value for each mini-batch
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of size 8. Attribute loss decreases steadily over all 10 epochs. In Figure 3.6, we can
see how recall metrics for different attribute groups change over 10 training epochs.
Maximum recall values for all attribute groups happen after third epoch. Analyzing
those two plots jointly, we can conclude that even though loss decreases throughout the
whole training time, recalls on testing set starts to decrease after third epoch. That
means the model starts overfitting after third epoch and model gets too closely fitted
to the training data. FEarly stopping technique after third epoch was performed to
obtain the best-possible model. Actual best recall values per attribute group can be
seen in Table 3.1. As we can see, Texture and Shape are attribute type groups that
MTL method was able to predict with the highest recall. Style is the attribute group
with lowest average recall. Part and Fabric attribute groups have average recall values

in the middle between best and worst groups.

Texture Fabric Part Style

Palm Colurblock Leather Tweed Crop Mldll Bow-F FrmEedH Mickey Baseball

"

Figure 3.7: Attribute group examples [27]

In Figure 3.7 we can see image examples with attribute annotations being assigned
to one of five attribute groups. As we can see in the Figure, Style attribute group is
the most ambiguous of all groups and it is relatively hard for the attention module
to find regions of the image which are responsible for being labeled with particular
attribute, e.g. ’baseball’ attribute in Style group in Figure 3.7. On the other hand,
Shape attribute group has certain distinct visual appearance traits that make it easy
for attention module to find regions which contribute to image having attribute from

this group, e.g. ’crop’ attribute in Shape group in Figure 3.7.
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Figure 3.8: Landmark loss over 10 epochs
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Figure 3.9: Landmark prediction performance over 10 epochs

Lastly, let’s look at plots for landmarks’ position prediction task in Figure 3.8
and in Figure 3.9, with former plot visualizing loss value for the task over 10 epochs
and latter plot showing performance on test set for that task, as measured by average
distance between prediction and actual label (lower value means better prediction).
While analyzing results of that task is not essential from the perspective of my research
angle, as I only try to validate whether landmarks-related features might contribute to
categorization tasks described earlier, it is helpful to also see how network performs for
landmark position prediction task. As we can see in the Figure 3.8, loss decreases more
sharply during first two epochs, then decreases very slowly through the next six epochs
and completely plateaus in the last two epochs. Average distance on plot in Figure 3.9
drops strongly during first three epochs and then establishes a slight decrease trend

over the rest of time.
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3.2.2 CAT implementation

The difference between CAT and MTL solutions is that in CAT there is only catego-
rization branch, while localization branch and attention module are absent. Structure
of remaining modules is exactly the same, therefore information flow in the network
is analogues to the one described in the previous section. Neural architecture of CAT
implementation can be seen in Figure 3.10. As we can see, output from large VGG-16
network goes directly to max-pooling module and then to small VGG-16. Same loss
functions and performance metrics are used for categorization tasks, which allows for
easy comparison of results. Network has been trained over 10 epochs. Because of
the fact that this method was implemented primarily for comparison with the MTL

method, I am not providing separate training results in this section.

3.3 Results

In this section I describe results I was able to obtain and how I evaluated my research
questions, based on two implementations: MTL and CAT, which were described in
previous sections. As a reminder, my research angle focuses on finding out whether
using a multi-task learning approach and sharing knowledge between seemingly un-
related tasks improves generalization properties of VFU models, as understood by
having a broader understanding of the VFU domain. In my particular case, I measure
that generalization ability through evaluation of performance metrics (accuracy for
category prediction and recall for attribute prediction) for categorization tasks in two
solutions: MTL which uses a multi-task approach by passing feature representation
from landmark-designed branch to categorization branch, and CAT which is designed
only for categorization. If accuracy/recall improves with sharing knowledge between
tasks, it would mean that being able to predict landmarks also helps with predicting

category and therefore model has broader understanding of the VFU domain.
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Figure 3.11: Top-3 category accuracy of MTL and CAT methods over 10 epochs

Figure 3.11 depicts top-3 accuracy for category prediction for both built methods
(CAT method is marked as "CAT+ATTR" in the legend). Multi-task learning solution
MTL with localization-to-categorization knowledge sharing obtains best accuracy of
0.8605 after epoch 3, while CAT solution with no knowledge sharing between tasks
obtains best accuracy of 0.5621 after epoch 4.
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Figure 3.12: Top-3 Texture attribute recall of MTL and CAT methods over 10 epochs

Figure 3.12 depicts top-3 recall for attribute prediction of Texture group for both
built methods (CAT method is marked as "CAT+ATTR'" in the legend). MTL solution
obtains best recall of 0.5287 after epoch 3, while CAT solution obtains best recall of
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0.2124 after epoch 4. I chose Texture attribute group for comparison purposes, but
plots for other groups are very similar.

Looking at best results of both models for categorization tasks, MTL solution with
knowledge sharing obtained higher accuracy by 53% and higher attribute recall
by 149%, when compared to CAT solution without knowledge sharing. Therefore I
conclude that addition of knowledge passing from localization task to categorization
tasks drastically improves performance on main tasks of category and attribute pre-
diction. While in my implementation that knowledge sharing happens in a form of
passing landmark heatmaps, the above conclusion is valid for message passing in other
forms too. Performed experimentation confirms my hypothesis and indeed, multi-task
learning approach of feature sharing between tasks contributes to better
generalization of VFU models. Even though that localization task of landmark
position prediction and categorization tasks of garment’s category and attribute pre-
diction are seemingly unrelated, my experiment confirmed that in fact these tasks are
related and have common areas. Visual fashion understanding is a domain where tasks
influence each other and those tasks should not be treated separately. VFU models gain
tremendous advantages thanks to using large multi-task learning models, compared to
separate, smaller single-task-dedicated models. Majority of recent state-of-the-art so-
lutions in VFU research literature move towards multi-task learning (those solutions
were described in Section 2.5) and my experiment also confirmed that it is crucial to
share features between tasks, if we are aiming for the most generalizable deep learning

VFU models, with as broad understanding of the domain as possible.

3.4 Successes, challenges and possible continuation

steps

Main success of my research is that through experimentation with two separate imple-
mentations, I was able to confirm a more general hypothesis that multi-task learning
contributes to a broader understanding of VFU domain by deep learning models.

Main challenge is related to the fact that it is not entirely possible to isolate just
the issue of knowledge passing and assume that all performance improvement can be
attributed to that. While inclusion of attention module and additional convolutional
layers in MTL solution might be other factors that contribute to improved performance
metrics, I made sure to minimize such contributions by making those mentioned mod-
ules as small as possible.

While results of my research are satisfactory as they led to confirmation of my

initial hypothesis, there are certain next steps that should be taken to improve my
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solution. I believe that improvement areas described below might contribute to even
more generalizable VFU models.

In the previous section I stated that passing landmarks’ heatmap representation
from localization branch to categorization branch improves results for categorization
tasks. Drawing on those conclusions, I believe that passing features in the opposite
direction might lead to better performance on localization task. While it is more
intuitive to understand that focusing on regions around landmarks might help with
attribute prediction, it is also possible that knowing what kind of attribute a garment
in the image has, might contribute to better landmark prediction. Therefore passing
representation in the opposite direction could be the next thing I add to my MTL
implementation.

Another possible addition to the implemented method could be sharing knowledge
between even more tasks. If localization-related features help with category prediction,
then it’s possible that adding branches related to retrieval or segmentation, and passing
knowledge between all of them, could return even better results for all tasks.

Deep learning models cannot generalize outside of the training data distribution.
Therefore, if we are aiming for our model to be as close to human-level understanding
of the domain as possible, then we need to train it on highly-granular data. While
DeepFashion [19] dataset, that I used, is a great starting point for my analysis, it has
certain drawbacks, such as only one garment annotation per image or relatively low
amount of landmarks (4-8). Next step could be training my model on DeepFashion2 [§]
dataset, which is much more fine-grained than DeepFashion, contains multiple garments
per image and as much as 23 landmarks per average clothing category.

Last aspect that I could add to my implementation is hierarchical modeling of

categorization labels, similar to the method described in Section 2.2.1.

3.5 Performance comparison to other VFU solu-

tions

Beyond answering questions related to my research angle, it is also interesting to see
how the results I obtained compare to other state-of-the-art methods in the VFU field.
In Table 3.2, we can see prediction metrics of my solution for top-3 category accuracy, as
well as for other VFU methods I described in Chapter 2. All algorithms were evaluated
on the same DeepFashion’s [19] Category and attribute prediction benchmark, which

was described thoroughly in Section 2.1.2.
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Table 3.2: Comparison of my MTL and CAT implementations to other solutions, tested on Deep-
Fashion’s Attribute and Category benchmark [19]

H Top-3 category accuracy

My MTL solution 0.8605
My CAT solution 0.562

Liu et al. [16] (original paper), Section 2.5.3 || 0.9116
Wang et al. [27], Section 2.3.2 0.9099
Luo et al. [19], Section 2.5.1 0.8258
Huang et al. [12], Section 2.5.4 0.5948

As we can see, MTL implementation with top-3 accuracy of 0.8605 is only worse
than solutions by Wang [27] (Section 2.3.2) and by Liu et al. [16] (Section 2.5.3),
which is the original paper that inspired localization-to-categorization message passing
in my solution. A possible reason for Liu et al. obtaining better results than me is
having more attention modules stacked, which could lead to even more efficient lever-
aging of localization-related knowledge. However, I was able to obtain better results
than landmark pooling-based solution by Luo et al. [19] (Section 2.5.1), which also
used multi-task learning. A possible reason for that is the fact that I used landmark
heatmap upsampling, which allows for retaining high resolution of maps, while land-
mark pooling from Luo’s solution [19] downsamples maps, which leads to them being
of lower resolution.

My CAT implementation with top-3 accuracy of 0.562 performs worse than any
other analyzed method. It clearly shows that simple CNN-based solution is not enough
to compete with novel state-of-the-art methods, which use multi-task learning ap-

proach.



4. Conclusions

Advancements in neural networks are the main reason of rapid progress in computer
vision in recent times. Visual fashion understanding is a field where usage of deep
learning-based computer vision algorithms is natural, as nearly all VFU-related data
is in form of images. Understanding clothing garments in pictures is the fundamental
problem in all of VF'U tasks, such as garment category prediction, attribute prediction,
landmark localization, clothes detection and segmentation or street-to-shop retrieval.
In order to help the reader better understand those tasks, I made a survey of the field
and described most important solutions in Chapter 2.

Based on the observation that all VFU tasks are based around visually under-
standing garments, I came to the conclusion that those tasks might be in fact related.
I presented a hypothesis that building larger multi-task learning models dedicated to
predicting multiple tasks at once might lead to better generalization of VF'U models.
In order to assess validity of my hypothesis, I implemented two deep learning solu-
tions dedicated primarily to category and attribute prediction. First solution used
multi-task learning concept of sharing features from additional branch dedicated to
localization task of landmarks’ position prediction. Second solution did not have that
concept implemented, but all the remaining modules stayed the same. Comparison
of those two implementations confirmed my hypothesis, as sharing knowledge between
tasks increased category prediction accuracy by 53% and attributes prediction recall by
149%. Next steps for developing this solution further are incorporating even more task-
dedicated branches into the network and sharing features in more directions between
those branches.

After having surveyed scientific literature and having conducted my own exper-
iments, I believe that multi-task learning improves generalization properties of deep

learning-based visual fashion understanding models across tasks.
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