108 research outputs found

    Automatic Pain Assessment Through Facial Expressions

    Get PDF
    Pain is a strong symptom of diseases. Being an involuntary unpleasant feeling, it can be considered as a reliable indicator of health issues. Pain has always been expressed verbally, but in some cases, traditional patient self-reporting is not efficient. On one side, there are patients who have neurological disorders and cannot express themselves accurately, as well as patients who suddenly lose consciousness due to an abrupt faintness. On another side, medical staff working in crowded hospitals need to focus on emergencies and would opt for the automation of the task of looking after hospitalized patients during their entire stay, in order to notice any pain-related emergency. These issues can be tackled with deep learning. Knowing that pain is generally followed by spontaneous facial behaviors, facial expressions can be used as a substitute to verbal reporting, to express pain. That is, with the help of image processing techniques, an automatic pain assessment system can be implemented to analyze facial expressions and detect existing pain. In this project, a convolutional neural network model was built and trained to detect pain though patients’ facial expressions, using the UNBC-McMaster Shoulder Pain dataset [25]. First, faces were detected from images using the Haarcascade Frontal Face Detector [12], provided by OpenCV [26], and preprocessed through gray scaling, histogram equalization, face detection, image cropping, mean filtering and normalization. Next, preprocessed images were fed into a CNN model which was built based on a modified version of the VGG16 architecture. The model was finally evaluated and fine-tuned in a continuous way based on its accuracy

    Personalized Automatic Estimation of Self-reported Pain Intensity from Facial Expressions

    Full text link
    Pain is a personal, subjective experience that is commonly evaluated through visual analog scales (VAS). While this is often convenient and useful, automatic pain detection systems can reduce pain score acquisition efforts in large-scale studies by estimating it directly from the participants' facial expressions. In this paper, we propose a novel two-stage learning approach for VAS estimation: first, our algorithm employs Recurrent Neural Networks (RNNs) to automatically estimate Prkachin and Solomon Pain Intensity (PSPI) levels from face images. The estimated scores are then fed into the personalized Hidden Conditional Random Fields (HCRFs), used to estimate the VAS, provided by each person. Personalization of the model is performed using a newly introduced facial expressiveness score, unique for each person. To the best of our knowledge, this is the first approach to automatically estimate VAS from face images. We show the benefits of the proposed personalized over traditional non-personalized approach on a benchmark dataset for pain analysis from face images.Comment: Computer Vision and Pattern Recognition Conference, The 1st International Workshop on Deep Affective Learning and Context Modelin

    LOMo: Latent Ordinal Model for Facial Analysis in Videos

    Full text link
    We study the problem of facial analysis in videos. We propose a novel weakly supervised learning method that models the video event (expression, pain etc.) as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for smile, brow lower and cheek raise for pain). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF- it extends such frameworks to model the ordinal or temporal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations. In combination with complimentary features, we report state-of-the-art results on these datasets.Comment: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR

    Spatiotemporal Facial Super-Pixels for Pain Detection

    Get PDF
    • …
    corecore