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Abstract 
 

Developing a vision-based efficient and automatic pain 

intensity measurement system requires the understanding 

of the relationship between self-reported pain intensity and 

pain expression in the facial videos. In this paper, we first 

demonstrate how pain expression in facial video frames 

may not match with the self-reported score. This is because 

the pain and non-pain frames are not always visually 

distinctive; though the self-report tells different story of 

having pain and non-pain status. On the other hand 

previous studies reported that general facial expressions 

can be used as biometrics. Thus, in this paper we 

investigated the relevance of pain expression from facial 

video to be used as a biometric or soft-biometric trait. In 

order to do that, we employed a biometric person 

recognition scenario by using features obtained from the 

pain expression pattern found in the temporal axis of 

subjects’ videos. The results confirmed that the pain 

expression patterns have distinctive features between the 

subjects of the UNBC McMaster shoulder pain database. 

We concluded that as the pain expression patterns have 

subjective features as a biometric, this can also cause the 

difference between self-reported pain level and the visually 

observed pain intensity level.   

 

 

1. Introduction 

“Pain is an unpleasant sensory and emotional experience 

associated with actual or potential tissue damage, or 

described in terms of such damage”- this is how ‘pain’ was 

defined by the International Association for the Study of 

Pain (IASP). It is a prevalent medical problem and needs to 

be managed effectively as a moral imperative, a 

professional responsibility and a duty of medical 

practitioners [1]. The widely used technique to measure 

pain level is ‘self-report’. However, self-reported pain level 

assessment does not always effectively apt in practical 

scenarios due to inconsistent metric properties across 

dimensions, efforts at impression management or 

deception, and differences between clinicians’ and 

sufferers’ conceptualization of pain [2]. Moreover, it 

requires cognitive, linguistic and social competencies that 

make self-report unfeasible to use for young children and 

patients with limited ability to communicate [3]–[5].   

 

Visual pain expression, revealed in the face, can be 

considered as a subset of facial expression and expresses 

emotion valley regarding to experiencing pain [6]. It can 

also provide the information about the severity of pain that 

can be assessed by using the Facial Action Coding System 

(FACS) of Ekman and Friesen [7], [8]. The FACS has long 

been used for measuring facial expression appearance and 

intensity. Thus, vision-based approaches came into scene to 

measure pain by using features from facial appearance 

change. Prkachin first reported the consistency of facial 

pain expressions for different pain modalities in [9] and 

then together with Solomon developed a pain metric called 

Prkachin and Solomon Pain Intensity (PSPI) scale based on 

FACS in [10].      

 

Several studies were conducted to find the correlation 

between self-reported pain and facial expression changes 

observed visually, as it is necessary to understand this 

relationship to develop a vision-based efficient and 

automatic pain intensity detection system. Many of them 

reported that self-report and pain expressions are largely 

unrelated [9], [11]–[13]. On the other hand, some others 

found significant relationship between these two [14]–[18]. 

Prkachin et al. provided an explanation for such 

discrepancies among these studies [10]. They brought 

forward a psychometric problem exhibited by the methods 

of [9], [11]–[13] by stating that these methods used very 

few measures of subjective reports of pain levels. On the 

other hand, Kunz et al. showed that visual analysis of pain 

becomes more difficult to be correlated with self-report in 

the presence of external factors like ‘smiling in pain’ and 

social motives [19]. The relationship of gender (male’s vs 

female’s way of experiencing) to pain was reported in [20], 

[21]. A glimpse of the reason why pain expression may not 

match with the self-reported score can be found in Figure 1. 

From the facial images in the figure, we can see that the 

pain and non-pain frames are not visually distinctive so 

much; however the self-report tells different story of having 

pain and non-pain status. 
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Figure 1 Understanding the difficulties of visually distinguishing 

pain expression between pain and non-pain facial video frames 

obtained from the UNBC-McMaster shoulder pain database [22]. 

The pain frames are at the left and the non-pain frames are at the 

right.   

 

Recent studies reported that general facial expressions 

like sad, anger, happy, etc. translated by FACS can be used 

as a biometric or soft-biometric trait in person identification 

[23]–[26]. As pain expression in the face is a subset of 

facial expression, pain expression may also have some 

distinctive biometric property to identify subjects. Thus, in 

addition to the aforementioned three reasons from [10], 

[19]–[21] of reporting the lack of relationship between 

self-report and pain expression, there can be another reason 

that pain expression in the face is subjective and varies 

from person to person even though self-reported pain levels 

are same. However, this reasoning needs to be justified and 

this is the first concern of this paper.  

 

Facial expressions are different for different emotional 

state like sad, happy, disgust. Study showed that general 

facial expressions including sad, happy, disgust, anger, fear 

and surprise of different people for the same emotional 

state also vary [23]. Thus, like many other biometric traits 

such as Electrocardiogram (ECG), Phonocardiogram 

(PCG), gait, gesture, etc. [27]–[29] general facial 

expressions can be used as biometric or soft-biometric for 

authentication or forensic investigations, as shown in [23]–

[26]. Though pain can be considered as a subset of facial 

expressions, it is not investigated in the literature that 

whether pain expression patterns of different persons are 

distinctive or not. Thus, we can investigate whether or not 

the expression patterns are distinctive between the subjects. 

This is the second concern of this paper. 

 

The contributions of this paper are to address these two 

concerns mentioned in the previous two paragraphs. We 

analyze different subjects pain expression pattern exhibited 

in the temporal axis of video frames and find whether pain 

expression patterns are distinctive between the subjects. If 

we find that they are distinctive between the subjects, then 

we can conclude as follows:  

 

 Along with other reasons, the varying pattern of pain 

expression in temporal domain with respect to 

subjects’ identity is a reason of finding self-report and 

pain expressions are largely unrelated.  

 Like other facial expression patterns obtained from 

facial video; the pain expression pattern is so 

distinctive between the subjects that it can be used as a 

biometric/soft-biometric.  

 

In order to do that, we employ a biometric person 

recognition scenario by using features obtained from the 

pain expression pattern found in the temporal axis of 

subjects’ videos. The outcome of the paper can be used in 

further research to understand the difference between 

self-reported pain level and visually observed pain level 

from facial expression. Understanding of this relationship 

will in turns helps to develop more accurate automatic pain 

detection system using visual features that will match with 

self-reported pain levels by considering subject-specific 

patterns of pain level reporting. 

 

The rest of the paper is organized as follows. Section 2 

describes the methodology of our experiment. Section 3 

demonstrates the experimental results and discussions. 

Finally, Section 4 concludes the paper.   

 

 

2. Methodology of the Experiment 

Employing pain expression pattern in a biometric person 

recognition scenario requires a multi-step procedure. In this 

section, we first describe a shoulder pain expression 

database, the UNBC-McMaster database [22], to be used in 

our experiment. We then demonstrate the procedure of 

extracting pain expressions from each frame of video 

sequences and employing these expressions in the temporal 

axis of the video sequences as pain pattern for a biometric 

authentication experiment.  

  

2.1. The database 

In this study, we use a database created by Lucey et al. with 
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the title “PAINFUL DATA: The UNBC-McMaster 

Shoulder Pain Expression Archive Database” [22] and the 

database is hereafter referred to the UNBC-McMaster 

database. The database contains facial video sequences of 

participants who had been suffering from shoulder pain and 

were performing a series of active and passive range of 

motion tests to their affected and unaffected limbs on 

multiple occasions. The database also contains FACS 

information of the video frames, self-reported pain scores 

in sequence level and facial landmark points obtained by 

Active Appearance Model (AAM) [30], [31]. The database 

was widely used in the literature including [32]–[35]. 

 

 

   

  

 

  

  
Figure 2 Some example video frames from the UNBC-McMaster 

shoulder pain database [22].  

 

The database was created by capturing facial videos 

from 129 participants (63 males and 66 females). The 

participant had a wide variety of occupations and ages. 

During data capturing the participants underwent eight 

standard range-of-motion tests: abduction, flexion, and 

internal and external rotation of each arm separately as 

suggested in [36]. Participants’ self-reported pain score 

along with offline independent observers rated pain 

intensity were recorded. Figure 2 shows some example 

video frames from the database.  

 

 

2.2. Extracting pain expressions from the frames 

Pain expression in a face can be observed by analyzing 

different facial actions such as eyebrow-raising, 

cheeks-raising, nose-crinkling, lip-raising, lips-pulling, etc. 

[3]. These facial actions can be described by 44 different 

facial action units defined in [7]. A vast body of literature 

described which units out of these 44 action units represent 

pain-information. A list of the relevant action units is 

provided in Table 1. Except AU43, all of these action units 

are coded on a 5-levels intensity dimension (A-E or a-e) by 

a human FACS coder in a frame-by-frame basis. The 

maximum intensity is denoted by E/e and the slightest 

indication of AU’s existence is denoted by A/a. The AU43 

is coded by 2-levels closure status.  

 
Table 1 List of facial action units that contain pain information.   

Action Unit Description 

AU1 Raising inner eyebrow corners 

AU2/2L/2R Raising outer eyebrow corners 

AU4 Lowering eyebrows 

AU5 Raising upper eyelids 

AU6 Raising cheeks 

AU7 Pulling up eyelids 

AU9 Crinkling nose 

AU10 Raising upper lip 

AU12/12L/12R Pulling up lip corners obliquely 

AU14/14L/14R Tightening lip corners 

AU15 Pulling down lip corners 

AU16 Pulling down lower lip 

AU17 Pulling up chin boss 

AU18 Pulling lips together  

AU20 Pulling lips horizontally 

AU22 Funneling lips 

AU23 Tightening lips 

AU24 Pressing lips against each other 

AU28 Sucking lips into the mouth 

AU32 Biting lip 

AU37 Wiping lip 
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Around two decades ago Prkachin reported that only 

four action units- AU4, AU6|AU7, AU9|AU10 and AU43- 

carry the majority information about pain. This report was 

later confirmed in a recent investigation and a pain scale 

called PSPI was developed based on the FACS information 

of facial pain expression [10]. This PSPI metric is defined 

by a sum rule as follows:  

 

𝑃𝑆𝑃𝐼𝑠𝑐𝑜𝑟𝑒 = 𝐴𝑈4 + (𝐴𝑈6|𝐴𝑈7) + 
(𝐴𝑈9|𝐴𝑈10) + 𝐴𝑈43      (1) 

 

where, (. . |. . ) operator refers to the greater one among the 

two arguments. The summation result yields a 16-point 

scale. The details of this scale can be found in [10]. The 

authors of the UNBC-McMaster database provides FACS 

coded information for the video frames in the database [7], 

[8]. By employing the aforementioned sum rule on these 

FACS values for the frames we can calculate the pain 

intensity level of each frame in PSPI scale. If we consider 

𝑃𝑆𝑃𝐼𝑠𝑐𝑜𝑟𝑒  of one frame, it provides us the instantaneous 

pain intensity level in that frame. However, in a video 

sequence we can obtain the frames 𝑃𝑆𝑃𝐼𝑠𝑐𝑜𝑟𝑒  or FACS 

values as time-series. As our interest is to investigate 

whether the pain expression patterns are distinctive 

between subjects, we obtain time-series of 𝑃𝑆𝑃𝐼𝑠𝑐𝑜𝑟𝑒 and 

FACS values to generate pain expression patterns to be 

employed in a biometric authentication framework. The 

details of the time series configuration will be provided in 

the experimental environment section.  

 

 

2.3. Biometric authentication framework 

A biometric authentication framework consists of four 

basic building blocks: a) data acquisition module, b) feature 

extractor, c) training module and d) testing module [37]. 

Figure 3 shows the structure of the framework used in our 

experiment. We accomplished the first two steps of the 

authentication system by using the off-the-shelf 

UNBC-McMaster shoulder pain database. While creating 

the database, the data acquisition phase was accomplished 

by using simple digital camera and the features were 

extracted as the FACS values using certified human FACS 

coder as discussed before.  

 

The rest of the two modules require train/test partition of 

the database. The training and testing module also require a 

machine learning approach to accomplish biometric 

authentication as a classification task. In order to do that, 

we employ an Artificial Neural Network (ANN) [38]. A 

basic ANN contains sets of neuron divided into input layer, 

hidden layers and output layer. When input layer receive 

the input data, it calculates the weights by employing an 

activation function to generate the outputs in the neuron(s) 

of the output layer. The detailed parameter values regarding 

to our experimental setup will be provided in the 

experimental environment section.     

 

 

 
Figure 3 The biometric authentication framework used in our 

experiment.  

 

 

3. Experimental Results 

3.1. Experimental environment 

We used the UNBC-McMaster shoulder pain database to 

evaluate the performance of pain expression as a 

biometric/soft-biometric trait. The original paper of the 

database reported 48398 FACS coded facial video frames 

[22]. However, the online portal of the database 

(http://www.pitt.edu/~jeffcohn/PainArchive/) does not 

contain all of these data mentioned in the original paper. 

Currently, we have 31971 frames from 16 subjects with 

FACS codes among which 4922 frames have pain intensity 

levels 1-12 in PSPI scale. The distribution of the pain 

frames with all the frames for the subjects are listed in 

Table 2. Exploiting temporal axis information from pain 

expression in a video sequence requires considering the 

FACS values from more than one frame. Thus, we generate 

the feature vector by aggregating the FACS values of a 

frame and 30 previous frames along with their calculated 

Feature extraction 

Data acquisition 

Authentication 

Training module 

Testing module 

Aggregating 

FACS values in 

temporal axis 

Video capturing 

and FACS coding 

Artificial Neural 

Network (ANN) 

Predicting 

subject’s ID from 

pain expression 

pattern 
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PSPI score. Our objective is not to distinguish between pain 

and non-pain frames by using the FACS values. Instead we 

would like to realize the whether the patterns of FACS 

values as the representation of pain in video sequences of 

different subjects are distinctive to each other.     

  

 
Table 2 Subject-wise pain/non-pain frames in the experimental 

UNBC-McMaster shoulder pain database.   

Subject ID 
No. of pain 

frames 
Total no. of frames 

1.  239 2134 

2.  92 1120 

3.  64 1608 

4.  84 894 

5.  522 2752 

6.  95 2609 

7.  98 773 

8.  160 1612 

9.  512 2474 

10.  1120 2038 

11.  471 1502 

12.  498 809 

13.  181 2361 

14.  148 3360 

15.  0 2819 

16.  638 2706 

 

 

A feed-forward ANN based classification framework 

was implemented in Matlab as shown in Figure 4. The 

number of hidden layers for the ANN was 5, the number of 

neurons in the input layer was 223 (based on the number of 

input non-zero FACS values), and the number of output 

neuron is 1. When training data is fed to the network, the 

ANN learns the weights to transform the inputs to an 

output. We then feed the testing data to get the testing 

results. The output neuron provides a subject ID 

automatically calculated by the neural network from the 

weights (w), and feature values (b) where the pain pattern is 

expressed in the FACS values. If the subject ID matches 

with the ground truth ID value, then it is a success. We 

randomly divided the experimental data by employing a 

test/train ratio of 0.05 to 0.50, where 0.05 refers to 95% 

training data and 5% testing data from the total database. 

Whole process was iterated 10 times to ensure multifold 

validation in each test/train configurations.    

 

 

3.2. Performance evaluation 

The ANN training validation errors and testing 

accuracies obtained in 10-fold executions of a test/train 

configuration 0.05 are listed in Table 3. In addition, the 

authentication results for the testing frames of all 16 

subjects from one execution of test/train configuration 0.05 

are shown in a confusion matrix (a row matrix) at Table 4. 

The true positive detections are shown in the first diagonal 

of the matrix, false positive detections are in the columns, 

and false negative detections are in the rows. From the 

results of Table 3, we can observe that randomly dividing 

the database into testing and training set with a test/train 

configuration may yield different testing accuracies in 

different executions; however the network learns some 

distinctive features in every attempt. The testing accuracy 

also showed proportional consistency with the validation 

error generated by the ANN for the train data. In addition, 

execution time for 31571 frames is around 152 frames per 

second in the worst case scenario of 9
th

 execution cycle. 

The confusion matrix also shows that a good number of 

true positive identifications were achieved for the most of 

the frames. 

     

 

 
Figure 4 The feed-forward ANN implemented in Matlab. 

 

 
Table 3 Results of the 10-folds execution of a test/train 

configuration 0.05.   

Execution 

turn 

Validation 

error 

Testing 

accuracy (%) 

Time to 

execute 

(sec) 

1.  0.023 98.94 134.07 

2.  0.015 100.0 198.87 

3.  0.354 64.84 93.60 

4.  0.113 86.87 76.10 

5.  0.042 99.32 143.94 

6.  0.051 96.59 205.31 

7.  0.313 66.68 184.27 

8.  0.013 100.0 152.71 

9.  0.091 90.41 207.53 

10.  0.266 70.56 203.32 

 

 

In order to explore the identification accuracy for 

different test/train configurations of the UNBC-McMaster 

database, we listed the results of 10-fold execution of 
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different test/train configurations from 0.05 to 0.50 in Table 

5. From the results we can observed that when the network 

get big number of training samples in 0.05 test/train 

configuration, the testing accuracy is very high. When the 

training data is reduced the accuracy also reduces slightly, 

until when the network does not get sufficient training data 

(e.g. the case of 0.50 configuration). The standard deviation 

of the 10-fold execution also increases when training data is 

reduced.  

 

 

3.3. Discussions 

The primary objective our investigation was to clarify 

whether or not the pain expression patterns can distinguish 

between the subjects of the UNBC-McMaster shoulder 

pain database. We used the FACS values of facial video 

frames in temporal axis as pain expression pattern and 

obtained very high accuracy in distinguishing between the 

subjects. Thus, the results reasonably lead us to the 

conclusion that like other facial expression patterns 

obtained from facial video [24]; the pain expression pattern 

is also distinctive between the subjects and it can be 

potential candidate to be used as a biometric/soft-biometric 

trait. In addition, along with many other reasons [19], the 

varying pattern of pain expression in temporal domain with 

respect to subjects’ identity can be a reason of finding 

self-report and pain expression based PSPI scores are 

largely unrelated.  

 

 
Table 4 Confusion matrix for distinguishing between the subjects in frame levels by using pain expression pattern in a test/train 

configuration 0.05.   

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

Total 

testing 

frames 

S1 71 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103 

S2 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 

S3 0 0 86 0 0 0 0 0 0 0 0 0 0 0 0 0 86 

S4 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 40 

S5 0 0 0 0 134 0 0 0 0 0 0 0 0 0 0 0 134 

S6 0 0 0 0 0 135 0 0 0 0 0 0 0 0 0 0 135 

S7 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 40 

S8 0 0 0 0 0 0 0 72 0 0 0 0 0 0 0 0 72 

S9 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 130 

S10 0 0 0 0 0 0 0 0 0 108 0 0 0 0 0 0 108 

S11 0 0 0 0 0 0 0 0 0 0 79 0 0 0 0 0 79 

S12 0 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 43 

S13 0 0 0 0 0 0 0 0 0 0 0 0 124 2 0 0 126 

S14 0 0 0 0 0 0 0 0 0 0 0 0 0 178 0 0 178 

S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 134 0 134 

S16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 123 123 

 

 

4.  Conclusions 

In this paper, we first pointed out that pain expression in 

facial video frames may not match with the self-reported 

score. This is because the pain and non-pain frames are not 

always visually distinctive enough; though the self-report 

tells different story of having pain and non-pain status. On 
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the other hand previous studies reported that facial 

expression patterns can be used as a biometric. Bearing 

these in mind, in this paper we investigated the relevance of 

pain expression from facial video to be used as a biometric 

or soft-biometric trait. In order to do that, we employed a 

biometric person recognition scenario using ANN with 

features obtained from the pain expression pattern found in 

the temporal axis of subjects’ videos. The results confirmed 

that the pain expression patterns have distinctive features 

between the subjects of the UNBC McMaster shoulder pain 

database. As the pain expression patterns have subjective 

features to be used as biometric, this can cause the 

difference between self-reported pain level and the PSPI 

score.   

 

Our present study has the limitations that the database 

with 16 different subjects is not big enough and the 

database only contains shoulder pain expressions. 

However, the outcome of the paper is expected to be used 

in the future research to understand the difference between 

self-reported pain level and visually observed pain level in 

the facial pain expression. Understanding of this 

relationship will in turns helps to develop more accurate 

automatic pain detection system using visual features.   

 

 
Table 5 Multifold identification results with different test/train 

configurations.   

Test/train 

configuration 

Avg. testing 

accuracy 

Standard deviation of 

10 fold execution 

0.05 90.67 11.87 

0.10 79.01 15.12 

0.20 77.61 12.19 

0.30 77.48 12.87 

0.40 78.70 18.32 

0.50 67.57 17.72 
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