730 research outputs found

    Business Intelligence, Analytics And Data Visualization: A Heat Map Project Tutorial

    Get PDF
    Business intelligence and analytics (BI&A) initiatives are helping countless organizations harness and interpret the vast amount of information available in the world today. The explosion of BI&A in industry has fueled the high demand for knowledge workers with advanced analytical skills. The purpose of this paper is to introduce a data visualization project tutorial for Information Systems (IS) education. The applied BI&A tutorial was designed to help students learn how to create and analyze a heat map using SQL Server Data Tools (SSDT) and SQL Server Reporting Services (SSRS). Students learn how to make decisions based on large amounts of data by presenting it in visual form. This tutorial exposes students to the decision-making power derived from data visualization. Utilizing the 5E Instructional Model, the tutorial assists in the development of BI&A professionals who can quickly make sense of mass amounts of data, identify trends buried within data sets, and are skilled in making sound decisions that add value to organizations

    TR-2009005: Visual Analytics: A Multi-Faceted Overview

    Full text link

    The Current State of Business Intelligence in Academia: The Arrival of Big Data

    Get PDF
    In December 2012, the AIS Special Interest Group on Decision Support, Knowledge and Data Management Systems (SIGDSS) and the Teradata University Network (TUN) cosponsored the Business Intelligence Congress 3 and conducted surveys to assess academia’s response to the growing market need for students with Business Intelligence (BI) and Business Analytics (BA) skill sets. This panel report describes the key findings and best practices that were identified, with an emphasis on what has changed since the BI Congress efforts in 2009 and 2010. The article also serves as a “call to action” for universities regarding the need to respond to emerging market needs in BI/BA, including “Big Data.” The IS field continues to be well positioned to be the leader in creating the next generation BI/BA workforce. To do so, we believe that IS leaders need to continuously refine BI/BA curriculum to keep pace with the turbulent BI/BA marketplace

    Lessons learned from challenging data science case studies

    Get PDF
    In this chapter, we revisit the conclusions and lessons learned of the chapters presented in Part II of this book and analyze them systematically. The goal of the chapter is threefold: firstly, it serves as a directory to the individual chapters, allowing readers to identify which chapters to focus on when they are interested either in a certain stage of the knowledge discovery process or in a certain data science method or application area. Secondly, the chapter serves as a digested, systematic summary of data science lessons that are relevant for data science practitioners. And lastly, we reflect on the perceptions of a broader public towards the methods and tools that we covered in this book and dare to give an outlook towards the future developments that will be influenced by them

    A Survey of Information Visualization Books

    Get PDF
    Information visualization is a rapidly evolving field with a growing volume of scientific literature and texts continually published.To keep abreast of the latest developments in the domain, survey papers and state-of-the-art reviews provide valuable tools formanaging the large quantity of scientific literature. Recently a survey of survey papers (SoS) was published to keep track ofthe quantity of refereed survey papers in information visualization conferences and journals. However no such resources existto inform readers of the large volume of books being published on the subject, leaving the possibility of valuable knowledgebeing overlooked. We present the first literature survey of information visualization books that addresses this challenge bysurveying the large volume of books on the topic of information visualization and visual analytics. This unique survey addressessome special challenges associated with collections of books (as opposed to research papers) including searching, browsingand cost. This paper features a novel two-level classification based on both books and chapter topics examined in each book,enabling the reader to quickly identify to what depth a topic of interest is covered within a particular book. Readers can usethis survey to identify the most relevant book for their needs amongst a quickly expanding collection. In indexing the landscapeof information visualization books, this survey provides a valuable resource to both experienced researchers and newcomers inthe data visualization discipline

    Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data

    Full text link
    Abstract Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be ‘team science’.http://deepblue.lib.umich.edu/bitstream/2027.42/134522/1/13742_2016_Article_117.pd

    The 4+1 Model of Data Science

    Full text link
    Data Science is a complex and evolving field, but most agree that it can be defined as a combination of expertise drawn from three broad areascomputer science and technology, math and statistics, and domain knowledge -- with the purpose of extracting knowledge and value from data. Beyond this, the field is often defined as a series of practical activities ranging from the cleaning and wrangling of data, to its analysis and use to infer models, to the visual and rhetorical representation of results to stakeholders and decision-makers. This essay proposes a model of data science that goes beyond laundry-list definitions to get at the specific nature of data science and help distinguish it from adjacent fields such as computer science and statistics. We define data science as an interdisciplinary field comprising four broad areas of expertise: value, design, systems, and analytics. A fifth area, practice, integrates the other four in specific contexts of domain knowledge. We call this the 4+1 model of data science. Together, these areas belong to every data science project, even if they are often unconnected and siloed in the academy.Comment: 28 page
    corecore