9 research outputs found

    Resource Constrained Structured Prediction

    Full text link
    We study the problem of structured prediction under test-time budget constraints. We propose a novel approach applicable to a wide range of structured prediction problems in computer vision and natural language processing. Our approach seeks to adaptively generate computationally costly features during test-time in order to reduce the computational cost of prediction while maintaining prediction performance. We show that training the adaptive feature generation system can be reduced to a series of structured learning problems, resulting in efficient training using existing structured learning algorithms. This framework provides theoretical justification for several existing heuristic approaches found in literature. We evaluate our proposed adaptive system on two structured prediction tasks, optical character recognition (OCR) and dependency parsing and show strong performance in reduction of the feature costs without degrading accuracy

    Learning Dynamic Feature Selection for Fast Sequential Prediction

    Full text link
    We present paired learning and inference algorithms for significantly reducing computation and increasing speed of the vector dot products in the classifiers that are at the heart of many NLP components. This is accomplished by partitioning the features into a sequence of templates which are ordered such that high confidence can often be reached using only a small fraction of all features. Parameter estimation is arranged to maximize accuracy and early confidence in this sequence. Our approach is simpler and better suited to NLP than other related cascade methods. We present experiments in left-to-right part-of-speech tagging, named entity recognition, and transition-based dependency parsing. On the typical benchmarking datasets we can preserve POS tagging accuracy above 97% and parsing LAS above 88.5% both with over a five-fold reduction in run-time, and NER F1 above 88 with more than 2x increase in speed.Comment: Appears in The 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, China, July 201

    Training for Fast Sequential Prediction Using Dynamic Feature Selection

    Full text link
    We present paired learning and inference algorithms for significantly reducing computation and increasing speed of the vector dot products in the classifiers that are at the heart of many NLP components. This is accomplished by partitioning the features into a sequence of templates which are ordered such that high confidence can often be reached using only a small fraction of all features. Parameter estimation is arranged to maximize accuracy and early confidence in this sequence. We present experiments in left-to-right part-of-speech tagging on WSJ, demonstrating that we can preserve accuracy above 97% with over a five-fold reduction in run-time.Comment: 5 pages, NIPS Modern ML + NLP Workshop 201

    Resource constrained structured prediction

    Full text link
    We study the problem of structured prediction under test-time budget constraints. We propose a novel approach applicable to a wide range of structured prediction problems in computer vision and natural language processing. Our approach seeks to adaptively generate computationally costly features during test-time in order to reduce the computational cost of prediction while maintaining prediction performance. We show that training the adaptive feature generation system can be reduced to a series of structured learning problems, resulting in efficient training using existing structured learning algorithms. This framework provides theoretical justification for several existing heuristic approaches found in literature. We evaluate our proposed adaptive system on two structured prediction tasks, optical character recognition (OCR) and dependency parsing and show strong performance in reduction of the feature costs without degrading accuracy.Accepted manuscrip

    Learning in the Real World: Constraints on Cost, Space, and Privacy

    Get PDF
    The sheer demand for machine learning in fields as varied as: healthcare, web-search ranking, factory automation, collision prediction, spam filtering, and many others, frequently outpaces the intended use-case of machine learning models. In fact, a growing number of companies hire machine learning researchers to rectify this very problem: to tailor and/or design new state-of-the-art models to the setting at hand. However, we can generalize a large set of the machine learning problems encountered in practical settings into three categories: cost, space, and privacy. The first category (cost) considers problems that need to balance the accuracy of a machine learning model with the cost required to evaluate it. These include problems in web-search, where results need to be delivered to a user in under a second and be as accurate as possible. The second category (space) collects problems that require running machine learning algorithms on low-memory computing devices. For instance, in search-and-rescue operations we may opt to use many small unmanned aerial vehicles (UAVs) equipped with machine learning algorithms for object detection to find a desired search target. These algorithms should be small to fit within the physical memory limits of the UAV (and be energy efficient) while reliably detecting objects. The third category (privacy) considers problems where one wishes to run machine learning algorithms on sensitive data. It has been shown that seemingly innocuous analyses on such data can be exploited to reveal data individuals would prefer to keep private. Thus, nearly any algorithm that runs on patient or economic data falls under this set of problems. We devise solutions for each of these problem categories including (i) a fast tree-based model for explicitly trading off accuracy and model evaluation time, (ii) a compression method for the k-nearest neighbor classifier, and (iii) a private causal inference algorithm that protects sensitive data
    corecore