40,554 research outputs found

    Learning Vector Quantization Pada Pengenalan Pola Tandatangan

    Full text link
    ---Pengenalan pola tandatangan dimaksudkan agar komputer dapat mengenali tandatangan dengan cara mengkonversi gambar, baik yang dicetak ataupun ditulis tangan ke dalam kode. Metode yang dipilih dalam pengenalan pola tandatangan ini adalah metode pembelajaran Kohonen Neural Network(Kohonen) dan Learning Vector Quantization(LVQ). Metode Kohonen mengambil bobot awal secara acak, kemudian bobot tersebut di-update hingga dapat mengklasifikasikan diri sejumlah kelas yang diinginkan. Pada metode LVQ bobot awal di-update dengan menggunakan pola yang sudah ada. Dalam penelitian ini, diberikan hasil pengamatan dan perbandingan tentang tingkat keakuratan dan waktu yang dibutuhkan dalam proses pembelajaran terhadap pola tandatangan pada metode Kohonen dan LVQ menggunakan bahasa pemrograman Microsoft Visual Basic 6.0 Enterprise Edition

    Learning Vector Quantization 3 (LVQ3) and Spatial Fuzzy C-Means (SFCM) for Beef and Pork Image Classification

    Full text link
    Base on some cases in Indonesia, meat sellers often mix beef and pork. Indonesia is a predominantly Muslim country. Pork is forbidden in Islam. In this research, the classification of beef and pork image was performed. Spatial Fuzzy C-Means is used for image segmentation. GLCM and HSV are used as a feature of segmentation results. LVQ3 is used as a method of classification. LVQ3 parameters tested were the variety of learning rate values and window values. The learning rate values used is 0.0001; 0.01; 0.1; 0.4; 0.7; 0.9 and the window values used is 0.0001; 0.4; 0.7. The training data used is 90% of the total data, and the testing data used is 10%. Maximum epoch used is 1000 iterations. Based on the test results, the highest accuracy was 91.67%

    Video data compression using artificial neural network differential vector quantization

    Get PDF
    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes

    Bolt: Accelerated Data Mining with Fast Vector Compression

    Full text link
    Vectors of data are at the heart of machine learning and data mining. Recently, vector quantization methods have shown great promise in reducing both the time and space costs of operating on vectors. We introduce a vector quantization algorithm that can compress vectors over 12x faster than existing techniques while also accelerating approximate vector operations such as distance and dot product computations by up to 10x. Because it can encode over 2GB of vectors per second, it makes vector quantization cheap enough to employ in many more circumstances. For example, using our technique to compute approximate dot products in a nested loop can multiply matrices faster than a state-of-the-art BLAS implementation, even when our algorithm must first compress the matrices. In addition to showing the above speedups, we demonstrate that our approach can accelerate nearest neighbor search and maximum inner product search by over 100x compared to floating point operations and up to 10x compared to other vector quantization methods. Our approximate Euclidean distance and dot product computations are not only faster than those of related algorithms with slower encodings, but also faster than Hamming distance computations, which have direct hardware support on the tested platforms. We also assess the errors of our algorithm's approximate distances and dot products, and find that it is competitive with existing, slower vector quantization algorithms.Comment: Research track paper at KDD 201

    Does Non-linearity Matter in Retail Credit Risk Modeling?

    Get PDF
    In this research we propose a new method for retail credit risk modeling. In order to capture possible non-linear relationships between credit risk and explanatory variables, we use a learning vector quantization (LVQ) neural network. The model was estimated on a dataset from Slovenian banking sector. The proposed model outperformed the benchmarking (LOGIT) models, which represent the standard approach in banks. The results also demonstrate that the LVQ model is better able to handle the properties of categorical variables.retail banking, credit risk, logistic regression, learning vector quantization

    Perbandingan Algoritma Backpropagation Dan Learning Vector Quantization (LVQ) dalam Pengenalan Pola Bangun Ruang Geometri

    Get PDF
    Penelitian ini bertujuan untuk memberikan rekomendasi dari hasil perbandingan antara metode jaringan syaraf tiruan menggunakan metode backpropagation dan learning vector quantization (LVQ) dalam melakukan pengenalan pola. Kedua metode ini sering digunakan untuk aplikasi pengenalan pola, karena kedua metode ini mampu mengelompokkan pola-pola ke dalam kelas-kelas pola dan termasuk kedalam metode pembelajaran terawasi (supervised learning). Dalam penelitian ini akan dibuktikan metode backpropagation dan LVQ mampu mengenali pola bentuk geometri bangun datar serta menunjukkan metode mana yang lebih baik dalam melakukan pengenalan pola. Implementasi metode backpropagation dan learning vector quantization (LVQ) menggunakan toolbox Matlab v8.5. Hal pertama yang dilakukan adalah melakukan proses pengolahan citra yaitu proses grayscalling dan thresholding untuk mendapatkan nilai binerisasi yang akan digunakan sebagai nilai input pada JST. Setelah itu nilai input akan diproses pada metode JST backpropagation dan learning vector quantization. Dari hasil implementasi pengujian kedua metode tersebut didapatkan bahwa algoritma backpropagation lebih baik dari learning vector quantization dalam pengenalan pola bangun datar geometri.Penelitian ini bertujuan untuk memberikan rekomendasi dari hasil perbandingan antara metode jaringan syaraf tiruan menggunakan metode backpropagation dan learning vector quantization (LVQ) dalam melakukan pengenalan pola. Kedua metode ini sering digunakan untuk aplikasi pengenalan pola, karena kedua metode ini mampu mengelompokkan pola-pola ke dalam kelas-kelas pola dan termasuk kedalam metode pembelajaran terawasi (supervised learning). Dalam penelitian ini akan dibuktikan metode backpropagation dan LVQ mampu mengenali pola bentuk geometri bangun datar serta menunjukkan metode mana yang lebih baik dalam melakukan pengenalan pola. Implementasi metode backpropagation dan learning vector quantization (LVQ) menggunakan toolbox Matlab v8.5. Hal pertama yang dilakukan adalah melakukan proses pengolahan citra yaitu proses grayscalling dan thresholding untuk mendapatkan nilai binerisasi yang akan digunakan sebagai nilai input pada JST. Setelah itu nilai input akan diproses pada metode JST backpropagation dan learning vector quantization. Dari hasil implementasi pengujian kedua metode tersebut didapatkan bahwa algoritma backpropagation lebih baik dari learning vector quantization dalam pengenalan pola bangun datar geometri
    corecore