164,372 research outputs found

    Active Discriminative Text Representation Learning

    Full text link
    We propose a new active learning (AL) method for text classification with convolutional neural networks (CNNs). In AL, one selects the instances to be manually labeled with the aim of maximizing model performance with minimal effort. Neural models capitalize on word embeddings as representations (features), tuning these to the task at hand. We argue that AL strategies for multi-layered neural models should focus on selecting instances that most affect the embedding space (i.e., induce discriminative word representations). This is in contrast to traditional AL approaches (e.g., entropy-based uncertainty sampling), which specify higher level objectives. We propose a simple approach for sentence classification that selects instances containing words whose embeddings are likely to be updated with the greatest magnitude, thereby rapidly learning discriminative, task-specific embeddings. We extend this approach to document classification by jointly considering: (1) the expected changes to the constituent word representations; and (2) the model's current overall uncertainty regarding the instance. The relative emphasis placed on these criteria is governed by a stochastic process that favors selecting instances likely to improve representations at the outset of learning, and then shifts toward general uncertainty sampling as AL progresses. Empirical results show that our method outperforms baseline AL approaches on both sentence and document classification tasks. We also show that, as expected, the method quickly learns discriminative word embeddings. To the best of our knowledge, this is the first work on AL addressing neural models for text classification.Comment: This paper got accepted by AAAI 201

    Search Efficient Binary Network Embedding

    Full text link
    Traditional network embedding primarily focuses on learning a dense vector representation for each node, which encodes network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned dense vector representations are inefficient for large-scale similarity search, which requires to find the nearest neighbor measured by Euclidean distance in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a sparse binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations efficiently through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support much quicker network node search compared to Euclidean distance or other distance measures. Our experiments and comparisons show that BinaryNE not only delivers more than 23 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods
    • …
    corecore