17,000 research outputs found

    Learner expertise and mathematics different order thinking skills in multimedia learning

    Get PDF
    This experimental study used an instructional visual aid for algebra to investigate whether different order thinking skills – remembering, understanding and analyzing – affect the expertise reversal effect. One hundred and twenty-three secondary school students were assigned to an experimental condition, either with or without the aid. In the experiment, an aid that was designed for novice learners, and the materials were developed using multimedia learning principles to maximize the use of learner cognitive capacity. The results showed that the expertise reversal effect occurred in understanding (retention, more-structured), but not in remembering (transfer, more-structured) and analyzing skills (transfer, less-structured). A plausible explanation is less-structured environments that require heavier process of searching and/or selecting increased demand of cognitive load imposed. We suggest that designing adaptive environments should take order thinking skill, instructional format and learner expertise into account

    Toward future 'mixed reality' learning spaces for STEAM education

    Get PDF
    Digital technology is becoming more integrated and part of modern society. As this begins to happen, technologies including augmented reality, virtual reality, 3d printing and user supplied mobile devices (collectively referred to as mixed reality) are often being touted as likely to become more a part of the classroom and learning environment. In the discipline areas of STEAM education, experts are expected to be at the forefront of technology and how it might fit into their classroom. This is especially important because increasingly, educators are finding themselves surrounded by new learners that expect to be engaged with participatory, interactive, sensory-rich, experimental activities with greater opportunities for student input and creativity. This paper will explore learner and academic perspectives on mixed reality case studies in 3d spatial design (multimedia and architecture), paramedic science and information technology, through the use of existing data as well as additional one-on-one interviews around the use of mixed reality in the classroom. Results show that mixed reality can provide engagement, critical thinking and problem solving benefits for students in line with this new generation of learners, but also demonstrates that more work needs to be done to refine mixed reality solutions for the classroom

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    ImpacT2 project: preliminary study 1: establishing the relationship between networked technology and attainment

    Get PDF
    This report explored teaching practices, beliefs and teaching styles and their influences on ICT use and implementation by pupils. Additional factors explored included the value of school and LEA policies and teacher competence in the use of ICT in classroom settings. ImpaCT2 was a major longitudinal study (1999-2002) involving 60 schools in England, its aims were to: identify the impact of networked technologies on the school and out-of-school environment; determine whether or not this impact affected the educational attainment of pupils aged 816 years (at Key Stages 2, 3, and 4); and provide information that would assist in the formation of national, local and school policies on the deployment of IC

    Fostering reflection in the training of speech-receptive action

    Get PDF
    Dieser Aufsatz erörtert Möglichkeiten und Probleme der Förderung kommunikativer Fertigkeiten durch die Unterstützung der Reflexion eigenen sprachrezeptiven Handelns und des Einsatzes von computerunterstützten Lernumgebungen für dessen Förderung. Kommunikationstrainings widmen sich meistens der Förderung des beobachtbaren sprachproduktiven Handelns (Sprechen). Die individuellen kognitiven Prozesse, die dem sprachrezeptiven Handeln (Hören und Verstehen) zugrunde liegen, werden häufig vernachlässigt. Dies wird dadurch begründet, dass sprachrezeptives Handeln in einer kommunikativen Situation nur schwer zugänglich und die Förderung der individuellen Prozesse sprachrezeptiven Handelns sehr zeitaufwändig ist. Das zentrale Lernprinzip - die Reflexion des eigenen sprachlich-kommunikativen Handelns - wird aus verschiedenen Perspektiven diskutiert. Vor dem Hintergrund der Reflexionsmodelle wird die computerunterstützte Lernumgebung CaiMan© vorgestellt und beschrieben. Daran anschließend werden sieben Erfolgsfaktoren aus der empirischen Forschung zur Lernumgebung CaiMan© abgeleitet. Der Artikel endet mit der Vorstellung von zwei empirischen Studien, die Möglichkeiten der Reflexionsunterstützung untersucheThis article discusses the training of communicative skills by fostering the reflection of speech-receptive action and the opportunities for using software for this purpose. Most frameworks for the training of communicative behavior focus on fostering the observable speech-productive action (i.e. speaking); the individual cognitive processes underlying speech-receptive action (hearing and understanding utterances) are often neglected. Computer-supported learning environments employed as cognitive tools can help to foster speech-receptive action. Seven success factors for the integration of software into the training of soft skills have been derived from empirical research. The computer-supported learning environment CaiMan© based on these ideas is presented. One central learning principle in this learning environment reflection of one's own action will be discussed from different perspectives. The article concludes with two empirical studies examining opportunities to foster reflecti

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year – from interactive whiteboards to the rise of one–to–one tablet computers – every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learners’ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent £487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog

    Cognitive load theory, educational research, and instructional design: some food for thought

    Get PDF
    Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems that optimize the use of working memory capacity and avoid cognitive overload. Cognitive load theory has advanced educational research considerably and has been used to explain a large set of experimental findings. This article sets out to explore the open questions and the boundaries of cognitive load theory by identifying a number of problematic conceptual, methodological and application-related issues. It concludes by presenting a research agenda for future studies of cognitive load
    corecore