7,546 research outputs found

    Specific "scientific" data structures, and their processing

    Full text link
    Programming physicists use, as all programmers, arrays, lists, tuples, records, etc., and this requires some change in their thought patterns while converting their formulae into some code, since the "data structures" operated upon, while elaborating some theory and its consequences, are rather: power series and Pad\'e approximants, differential forms and other instances of differential algebras, functionals (for the variational calculus), trajectories (solutions of differential equations), Young diagrams and Feynman graphs, etc. Such data is often used in a [semi-]numerical setting, not necessarily "symbolic", appropriate for the computer algebra packages. Modules adapted to such data may be "just libraries", but often they become specific, embedded sub-languages, typically mapped into object-oriented frameworks, with overloaded mathematical operations. Here we present a functional approach to this philosophy. We show how the usage of Haskell datatypes and - fundamental for our tutorial - the application of lazy evaluation makes it possible to operate upon such data (in particular: the "infinite" sequences) in a natural and comfortable manner.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Formal Desingularization of Surfaces - The Jung Method Revisited -

    Get PDF
    In this paper we propose the concept of formal desingularizations as a substitute for the resolution of algebraic varieties. Though a usual resolution of algebraic varieties provides more information on the structure of singularities there is evidence that the weaker concept is enough for many computational purposes. We give a detailed study of the Jung method and show how it facilitates an efficient computation of formal desingularizations for projective surfaces over a field of characteristic zero, not necessarily algebraically closed. The paper includes a generalization of Duval's Theorem on rational Puiseux parametrizations to the multivariate case and a detailed description of a system for multivariate algebraic power series computations.Comment: 33 pages, 2 figure

    Integral D-Finite Functions

    Full text link
    We propose a differential analog of the notion of integral closure of algebraic function fields. We present an algorithm for computing the integral closure of the algebra defined by a linear differential operator. Our algorithm is a direct analog of van Hoeij's algorithm for computing integral bases of algebraic function fields

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition
    • …
    corecore