41,957 research outputs found

    The Lazarus Project. II. Spacelike extraction with the quasi-Kinnersley tetrad

    Get PDF
    The Lazarus project was designed to make the most of limited 3D binary black-hole simulations, through the identification of perturbations at late times, and subsequent evolution of the Weyl scalar Ψ4\Psi_4 via the Teukolsky formulation. Here we report on new developments, employing the concept of the ``quasi-Kinnersley'' (transverse) frame, valid in the full nonlinear regime, to analyze late-time numerical spacetimes that should differ only slightly from Kerr. This allows us to extract the essential information about the background Kerr solution, and through this, to identify the radiation present. We explicitly test this procedure with full numerical evolutions of Bowen-York data for single spinning black holes, head-on and orbiting black holes near the ISCO regime. These techniques can be compared with previous Lazarus results, providing a measure of the numerical-tetrad errors intrinsic to the method, and give as a by-product a more robust wave extraction method for numerical relativity.Comment: 17 pages, 10 figures. Journal version with text changes, revised figures. [Note updated version of original Lazarus paper (gr-qc/0104063)

    The Lazarus Effect: Healing Compromised Devices in the Internet of Small Things

    Full text link
    We live in a time when billions of IoT devices are being deployed and increasingly relied upon. This makes ensuring their availability and recoverability in case of a compromise a paramount goal. The large and rapidly growing number of deployed IoT devices make manual recovery impractical, especially if the devices are dispersed over a large area. Thus, there is a need for a reliable and scalable remote recovery mechanism that works even after attackers have taken full control over devices, possibly misusing them or trying to render them useless. To tackle this problem, we present Lazarus, a system that enables the remote recovery of compromised IoT devices. With Lazarus, an IoT administrator can remotely control the code running on IoT devices unconditionally and within a guaranteed time bound. This makes recovery possible even in case of severe corruption of the devices' software stack. We impose only minimal hardware requirements, making Lazarus applicable even for low-end constrained off-the-shelf IoT devices. We isolate Lazarus's minimal recovery trusted computing base from untrusted software both in time and by using a trusted execution environment. The temporal isolation prevents secrets from being leaked through side-channels to untrusted software. Inside the trusted execution environment, we place minimal functionality that constrains untrusted software at runtime. We implement Lazarus on an ARM Cortex-M33-based microcontroller in a full setup with an IoT hub, device provisioning and secure update functionality. Our prototype can recover compromised embedded OSs and bare-metal applications and prevents attackers from bricking devices, for example, through flash wear out. We show this at the example of FreeRTOS, which requires no modifications but only a single additional task. Our evaluation shows negligible runtime performance impact and moderate memory requirements.Comment: In Proceedings of the 15th ACM Asia Conference on Computer and Communications Security (ASIA CCS 20

    ОСНОВЫ РАБОТЫ С ГРАФИЧЕСКИМИ ИЗОБРАЖЕНИЯМИ В СИСТЕМЕ ОБЪЕКТНО-ОРИЕНТИРОВАННОГО ПРОГРАММИРОВАНИЯ

    Get PDF
    В статье представлена разработка элективных курсов по объектно-ориентированному программированию для работы с графическим интерфейсом в средах: Lazarus и Delphi. Представленные технологии позволяет создавать код программы с помощью графических элементов.The article offers the elective course development of object-oriented programming for the graphical interface in the following development environment: Lazarus and Delphi. The presented technologies allow creating program code by using graphical elements.236-24

    Revenue Ruling 70-531: A Change in the Treatment of Non-Dividend Redemptions at the Corporate Level

    Get PDF

    Radiation tails and boundary conditions for black hole evolutions

    Full text link
    In numerical computations of Einstein's equations for black hole spacetimes, it will be necessary to use approximate boundary conditions at a finite distance from the holes. We point out here that ``tails,'' the inverse power-law decrease of late-time fields, cannot be expected for such computations. We present computational demonstrations and discussions of features of late-time behavior in an evolution with a boundary condition.Comment: submitted to Phys. Rev.
    corecore