26 research outputs found

    Layered Steered Space–Time-Spreading-Aided Generalized MC DS-CDMA

    No full text
    Abstract—We present a novel trifunctional multiple-input– multiple-output (MIMO) scheme that intrinsically amalgamates space–time spreading (STS) to achieve a diversity gain and a Vertical Bell Labs layered space–time (V-BLAST) scheme to attain a multiplexing gain in the context of generalized multicarrier direct-sequence code-division multiple access (MC DS-CDMA), as well as beamforming. Furthermore, the proposed system employs both time- and frequency-domain spreading to increase the number of users, which is also combined with a user-grouping technique to reduce the effects of multiuser interference

    Multifunctional MIMO systems: A combined diversity and multiplexing design perspective

    No full text
    In this treatise we investigate the design alternatives of different multiple-input multiple-output schemes while considering the attainable diversity gains, multiplexing gains, and beamforming gains. Following a brief classification of different MIMO schemes, where the different MIMO schemes are categorized as diversity techniques, multiplexing schemes, multiple access arrangements, and beamforming techniques, we introduce the family of multifunctional MIMOs. These multifunctional MIMOs are capable of combining the benefits of several MIMO schemes and hence attaining improved performance in terms of both their bit error rate as well as throughput. The family of multifunctional MIMOs combines the benefits of both space-time coding and the Bell Labs layered space-time scheme as well as those of beamforming. We also introduce the idea of layered steered space-time spreading, which combines the benefits of space-time spreading, V-BLAST, and beamforming with those of the generalized multicarrier direct sequence code-division multiple access concept. Additionally, we compare the attainable diversity, multiplexing, and beamforming gains of the different MIMO schemes in order to document the advantages of multifunctional MIMOs over conventional MIMO schemes

    Near-capacity MIMOs using iterative detection

    No full text
    In this thesis, Multiple-Input Multiple-Output (MIMO) techniques designed for transmission over narrowband Rayleigh fading channels are investigated. Specifically, in order to providea diversity gain while eliminating the complexity of MIMO channel estimation, a Differential Space-Time Spreading (DSTS) scheme is designed that employs non-coherent detection. Additionally, in order to maximise the coding advantage of DSTS, it is combined with Sphere Packing (SP) modulation. The related capacity analysis shows that the DSTS-SP scheme exhibits a higher capacity than its counterpart dispensing with SP. Furthermore, in order to attain additional performance gains, the DSTS system invokes iterative detection, where the outer code is constituted by a Recursive Systematic Convolutional (RSC) code, while the inner code is a SP demapper in one of the prototype systems investigated, while the other scheme employs a Unity Rate Code (URC) as its inner code in order to eliminate the error floor exhibited by the system dispensing with URC. EXIT charts are used to analyse the convergence behaviour of the iteratively detected schemes and a novel technique is proposed for computing the maximum achievable rate of the system based on EXIT charts. Explicitly, the four-antenna-aided DSTSSP system employing no URC precoding attains a coding gain of 12 dB at a BER of 10-5 and performs within 1.82 dB from the maximum achievable rate limit. By contrast, the URC aidedprecoded system operates within 0.92 dB from the same limit.On the other hand, in order to maximise the DSTS system’s throughput, an adaptive DSTSSP scheme is proposed that exploits the advantages of differential encoding, iterative decoding as well as SP modulation. The achievable integrity and bit rate enhancements of the system are determined by the following factors: the specific MIMO configuration used for transmitting data from the four antennas, the spreading factor used and the RSC encoder’s code rate.Additionally, multi-functional MIMO techniques are designed to provide diversity gains, multiplexing gains and beamforming gains by combining the benefits of space-time codes, VBLASTand beamforming. First, a system employing Nt=4 transmit Antenna Arrays (AA) with LAA number of elements per AA and Nr=4 receive antennas is proposed, which is referred to as a Layered Steered Space-Time Code (LSSTC). Three iteratively detected near-capacity LSSTC-SP receiver structures are proposed, which differ in the number of inner iterations employed between the inner decoder and the SP demapper as well as in the choice of the outer code, which is either an RSC code or an Irregular Convolutional Code (IrCC). The three systems are capable of operating within 0.9, 0.4 and 0.6 dB from the maximum achievable rate limit of the system. A comparison between the three iteratively-detected schemes reveals that a carefully designed two-stage iterative detection scheme is capable of operating sufficiently close to capacity at a lower complexity, when compared to a three-stage system employing a RSC or a two-stage system using an IrCC as an outer code. On the other hand, in order to allow the LSSTC scheme to employ less receive antennas than transmit antennas, while still accommodating multiple users, a Layered Steered Space-Time Spreading (LSSTS) scheme is proposed that combines the benefits of space-time spreading, V-BLAST, beamforming and generalised MC DS-CDMA. Furthermore, iteratively detected LSSTS schemes are presented and an LLR post-processing technique is proposed in order to improve the attainable performance of the iteratively detected LSSTS system.Finally, a distributed turbo coding scheme is proposed that combines the benefits of turbo coding and cooperative communication, where iterative detection is employed by exchanging extrinsic information between the decoders of different single-antenna-aided users. Specifically, the effect of the errors induced in the first phase of cooperation, where the two users exchange their data, on the performance of the uplink in studied, while considering different fading channel characteristics

    Downlink Steered Space-Time Spreading For Multi-Carrier Transmission Over Frequency Selective Channels

    Full text link
    This paper presents a novel amalgam of Steered Space-Time Spreading (SSTS) and Orthogonal Frequency Division Multiple Access (OFDMA) designed for attaining both spatial diversity gain and beamforming gain for transmission over OFDM-symbol-invariant frequency selective channels. We propose a flexible technique for increasing the number of users beyond the number of chips in the spreading sequence employed by the SSTS scheme with the aid of the multiple carriers of OFDMA, which requires an extended bandwidth. However, employing a separate low-complexity SSTS detector combined with another separate OFDMA detector is potentially less complex than a single detector designed for detecting all the users supported in a single domain, regardless whether the singledomain Multi-User Detector (MUD) is an SSTS or OFDMA MUD. This is because the MUD’s complexity tends to increase exponentially with the number of users detected. The SSTSOFDMA system is benchmarked against its counterpart using S-depth Frequency Domain (FD) repetition, which increases the FD diversity order at the cost of reducing the overall throughput by a factor of S. Fortunately, a similar FD diversity gain may be achieved without a factor-S reduction in the throughput, when using FD spreading and assigning all the superimposed FD spreading codes to the same user

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Performance of a space-time coded multicarrier CDMA system in frequency-selective Rayleigh channel.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2014.The increasing demand for wireless services requires fast and robust broadband wireless communication for efficient utilisation of the scarce electromagnetic spectrum. One of the promising techniques for future wireless communication is the deployment of multi-input multi-output (MIMO) antenna system with orthogonal frequency division multiplexing (OFDM) coupled with multiple-access techniques. The combination of these techniques guarantees a much more reliable and robust transmission over the hostile wireless channel. This thesis investigates the performance of a multi-antenna space-time coded (STC) multi-carrier code-division multiple-access (MC-CDMA) system in a frequency-selective channel using Gold codes as spreading sequences. Spreading codes are known to be central to the performance of spread spectrum systems, STC MC-CDMA systems inclusive. Initial phase of this research work investigates multiple-access performance of spreading codes for the communication system. The performance of different sets of Gold codes for increasing number of interfering users for up to a thousand users and eight different code lengths, ranging from 31 to 4095-chip Gold codes, were considered. Simulation results show that odd-degree Gold codes give better bit-error-rate performance than even-degree Gold codes. Whereas the odd-degree codes exhibited relatively marginal loss in performance when the system was loaded, their even-degree counterparts degraded rapidly in performance, resulting in early emergence of an error floor, culminating in premature system saturation. Furthermore in this thesis, software simulations were carried to investigate the performance of a direct-sequence (DS) CDMA system in a flat-fading Rayleigh channel, and a multi-carrier (MC) CDMA system in a frequency-selective channel using different sets of Gold. The results showed that in a flat-fading channel, the Gold codes provide a constant coding gain close to that obtainable in a Gaussian channel. The results also showed that the impact of longer spreading codes was more pronounced for the MC-CDMA system in a frequency-selective channel as indicated by significant lowering of error floors. Also, frequency diversity associated with the use of longer codes coupled with multi-carrier modulation makes the MC-CDMA system resilient to multi-path effects. Further still, this thesis investigated the performance of a space-time block-coded (STBC) CDMA system in a flat-fading channel. Results showed that at low signal-to-noise ratio, the coding gain provided by the codes surpasses the diversity advantage provided by the use of the multiple antennas. The results also showed that coding gain between no-diversity link and its Gold-coded counterpart is the same as that between the transmit-diversity link and its Gold–coded counterpart. The independence of the diversity advantage provided by multiple transmit antennas and the coding gain obtainable from the use of the spreading sequences enables the prediction of the performance of composite space-time block-coded CDMA systems. Performance of a STBC OFDM system as well as a STBC MC-CDMA system in frequency-selective channel was also investigated. Results showed that the combination of diversity gain from the use of multiple antennas, coupled with coding gain provided by the Gold codes of the CDMA system, plus the diversity gain resulting from frequency diversity of multi-carrier transmission and the spectrum-spreading by the CDMA makes the composite STBC MC-CDMA system resilient to channel fading. This fact is particularly the case for long codes. For example, with reference to the OFDM transmission, the results showed that a 511-chip Gold-coded STC MC-CDMA system provided a factor of about 3,786 reduction in error floor

    Avaliação da probabilidade de erro de bit e da eficiência espectral de sistemas celulares MC-CDMA que utilizam detecção multiusuário

    Get PDF
    Orientador: Celso de AlmeidaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Uma técnica que combina múltiplo acesso por divisão de código (CDMA) e multiplexação por divisão de frequências ortogonais (OFDM) foi proposta como uma opção para futuros padrões de comunicações móveis. Esta técnica é conhecida como múltiplo acesso por divisão de código com multiportadoras (MC-CDMA), a qual além de herdar as vantagens das técnicas CDMA e OFDM, também possui uma inerente diversidade em frequência. Apesar de ser uma técnica de múltiplo acesso, MC-CDMA foi tipicamente estudada usando detectores de um único usuário no receptor. Além disso, alguns trabalhos que têm estudado seu desempenho com detectores multi-usuário usam apenas simulações. Ademais, cenários de uma célula são tipicamente considerados, embora sistemas móveis operem em ambientes celulares. Esta dissertação visa complementar parcialmente as pesquisas prévias sobre MC-CDMA. Em geral, este trabalho aborda o desempenho do enlace reverso de sistemas MC-CDMA em termos da taxa de erro de bit (BER) e da eficiência espectral celular. Para isto, um sistema celular que usa os esquemas de reuso de frequências fracionário (FFR) e suave (SFR) é suposto. Entrelaçamento no domínio da frequência é usado no transmissor dos equipamentos dos usuários e, detecção multiusuário e um arranjo de antenas são considerados nos receptores das estações radio base. O transmissor dos equipamentos dos usuários também realiza controle de potência perfeito. Além disso, ruído aditivo Gaussiano branco, perda de percurso e desvanecimento lento e seletivo que segue a distribuição de Rayleigh são considerados no modelo do canal. As contribuições desta dissertação são resumidas a seguir. Expressões fechadas são obtidas para avaliar a BER média de um sistema celular que usa os detectores multiusuário: zero-forcing (ZF), minimum mean square error (MMSE) e maximum likelihood detector (MU-MLD). Adicionalmente, a técnica signal space diversity (SSD) é usada no sistema celular MC-CDMA. Para isto, o MU-MLD precisa ser empregado no receptor da estação radio base. Uma expressão precisa para avaliar a BER média neste cenário é também derivada. Ademais, uma análise assintótica das expressões da BER é feita para se obter mais informações sobre a ordem da diversidade e o comportamento do sistema no regime de alta relação sinal-ruído mais interferência. A complexidade computacional dos detectores multi-usuário também é obtida em termos do número de operações complexas realizadas durante o processo de detecção. Em particular, o MU-MLD é implementado através de um algoritmo de decodificação esférica (SD), a fim de reduzir sua complexidade. Algumas técnicas são fornecidas para reduzir ainda mais a complexidade da SD. Finalmente, uma expressão para avaliar a eficiência espectral celular média do sistema MC-CDMA nos cenários FFR e SFR é obtida. Esta análise é baseada em um algoritmo que calcula os raios de cobertura da célula para cada modulação usada no sistema, assumindo que modulação adaptativa é empregada. Para todos os cenários, modulações BPSK e M-QAM são consideradas. Simulações de Monte Carlo corroboram a precisão da análise matemática apresentadaAbstract: A hybrid technique combining code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM) has been proposed as an option for future mobile communication standards. This technique is known as multicarrier code division multiple access (MC-CDMA), which, besides inheriting the advantages of CDMA and OFDM techniques, also possesses an inherent frequency diversity. Despite being a multiple access technique, MC-CDMA has been typically studied employing single-user detectors in the receiver. Moreover, some works that have studied their performance with multiuser detectors have done so far using only simulations. Furthermore, single cell scenarios are typically considered although mobile systems operate in cellular environments. This dissertation aims to partially complement previous research on MC-CDMA. In general, this work addresses the uplink performance of MC-CDMA systems in terms of the bit error rate (BER) and the cellular spectral efficiency. For this, a cellular system employing fractional frequency reuse (FFR) and soft frequency reuse (SFR) schemes is assumed. Frequency domain interleaving is performed in the transmitter into the user equipments and, multiuser detection and an antenna array are considered in the receivers at the base stations. The transmitter into the user equipments also performs perfect power control. Furthermore, additive white Gaussian noise, path-loss and slow frequency-selective Rayleigh fading are considered in the channel model. The contributions of this dissertation are summarized in the following. Closed-form expressions are derived to evaluate the mean BER of MC-CDMA cellular systems using the multiuser detectors: zero-forcing (ZF), minimum mean square error (MMSE) and maximum likelihood detector (MU-MLD). In addition, signal space diversity (SSD) is used in the MC-CDMA cellular system. For this, MU-MLD must be employed in the receiver at the base station. An accurate expression to evaluate the mean BER in this scenario is also derived. Moreover, an asymptotic analysis of the BER expressions is performed to obtain further insights of the diversity order and system behavior at the high signal-to-noise-plus-interference ratio regime. The computational complexity of the multiuser detectors is also obtained in terms of the number of complex operations performed during the detection process. In particular, MU-MLD is implemented via a sphere decoder (SD) algorithm in order to reduce its complexity. Some techniques are provided in order to further reduce the SD complexity. Finally, an expression to evaluate the mean cellular spectral efficiency of the MC-CDMA system in FFR and SFR scenarios is obtained. This analysis is based on an algorithm that calculates the cell coverage radius for each modulation used in the system, assuming that adaptive modulation is employed. For all analyzed scenarios, BPSK and M-QAM modulations are considered. Monte Carlo simulations corroborate the accuracy of the presented mathematical analysisDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia ElétricaCAPE

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them
    corecore