192 research outputs found

    The QoSxLabel: a quality of service cross layer label

    Get PDF
    A quality of service cross layer label

    Building self-optimized communication systems based on applicative cross-layer information

    Get PDF
    This article proposes the Implicit Packet Meta Header(IPMH) as a standard method to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams using legacy and proprietary streams’ headers (e.g. Real-time Transport Protocol headers). The use of IPMH by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet selfoptimization of communication services regarding the actual application requirements. A case study showing how IPMH is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach

    QoS provisioning in multimedia streaming

    Get PDF
    Multimedia consists of voice, video, and data. Sample applications include video conferencing, video on demand, distance learning, distributed games, and movies on demand. Providing Quality of Service (QoS) for multimedia streaming has been a difficult and challenging problem. When multimedia traffic is transported over a network, video traffic, though usually compressed/encoded for bandwidth reduction, still consumes most of the bandwidth. In addition, compressed video streams typically exhibit highly variable bit rates as well as long range dependence properties, thus exacerbating the challenge in meeting the stringent QoS requirements of multimedia streaming with high network utilization. Dynamic bandwidth allocation in which video traffic prediction can play an important role is thus needed. Prediction of the variation of the I frame size using Least Mean Square (LMS) is first proposed. Owing to a smoother sequence, better prediction has been achieved as compared to the composite MPEG video traffic prediction scheme. One problem with this LMS algorithm is its slow convergence. In Variable Bit Rate (VBR) videos characterized by frequent scene changes, the LMS algorithm may result in an extended period of intractability, and thus may experience excessive cell loss during scene changes. A fast convergent non-linear predictor called Variable Step-size Algorithm (VSA) is subsequently proposed to overcome this drawback. The VSA algorithm not only incurs small prediction errors but more importantly achieves fast convergence. It tracks scene changes better than LMS. Bandwidth is then assigned based on the predicted I frame size which is usually the largest in a Group of Picture (GOP). Hence, the Cell Loss Ratio (CLR) can be kept small. By reserving bandwidth at least equal to the predicted one, only prediction errors need to be buffered. Since the prediction error was demonstrated to resemble white noise or exhibits at most short term memory, smaller buffers, less delay, and higher bandwidth utilization can be achieved. In order to further improve network bandwidth utilization, a QoS guaranteed on-line bandwidth allocation is proposed. This method allocates the bandwidth based on the predicted GOP and required QoS. Simulations and analytical results demonstrate that this scheme provides guaranteed delay and achieves higher bandwidth utilization. Network traffic is generally accepted to be self similar. Aggregating self similar traffic can actually intensify rather than diminish burstiness. Thus, traffic prediction plays an important role in network management. Least Mean Kurtosis (LMK), which uses the negated kurtosis of the error signal as the cost function, is proposed to predict the self similar traffic. Simulation results show that the prediction performance is improved greatly as compared to the LMS algorithm. Thus, it can be used to effectively predict the real time network traffic. The Differentiated Service (DiffServ) model is a less complex and more scalable solution for providing QoS to IP as compared to the Integrated Service (IntServ) model. We propose to transport MPEG frames through various service classes of DiffServ according to the MPEG video characteristics. Performance analysis and simulation results show that our proposed approach can not only guarantee QoS but can also achieve high bandwidth utilization. As the end video quality is determined not only by the network QoS but also by the encoded video quality, we consider video quality from these two aspects and further propose to transport spatial scalable encoded videos over DiffServ. Performance analysis and simulation results show that this can provision QoS guarantees. The dropping policy we propose at the egress router can reduce the traffic load as well as the risk of congestion in other domains

    Scalable Multiple Description Coding and Distributed Video Streaming over 3G Mobile Networks

    Get PDF
    In this thesis, a novel Scalable Multiple Description Coding (SMDC) framework is proposed. To address the bandwidth fluctuation, packet loss and heterogeneity problems in the wireless networks and further enhance the error resilience tools in Moving Pictures Experts Group 4 (MPEG-4), the joint design of layered coding (LC) and multiple description coding (MDC) is explored. It leverages a proposed distributed multimedia delivery mobile network (D-MDMN) to provide path diversity to combat streaming video outage due to handoff in Universal Mobile Telecommunications System (UMTS). The corresponding intra-RAN (Radio Access Network) handoff and inter-RAN handoff procedures in D-MDMN are studied in details, which employ the principle of video stream re-establishing to replace the principle of data forwarding in UMTS. Furthermore, a new IP (Internet Protocol) Differentiated Services (DiffServ) video marking algorithm is proposed to support the unequal error protection (UEP) of LC components of SMDC. Performance evaluation is carried through simulation using OPNET Modeler 9. 0. Simulation results show that the proposed handoff procedures in D-MDMN have better performance in terms of handoff latency, end-to-end delay and handoff scalability than that in UMTS. Performance evaluation of our proposed IP DiffServ video marking algorithm is also undertaken, which shows that it is more suitable for video streaming in IP mobile networks compared with the previously proposed DiffServ video marking algorithm (DVMA)

    Management of Multimedia on the Internet

    Full text link

    Priority-Aware Packet Pre-marking for DiffServ Architecture Based on H.264/SVC Video Stream Structure

    Get PDF
    The H264/SVC codec allows for generation of hierarchical video streams. In the stream of this type video data belonging to different layers have different priority depending on their importance to the quality of the video and the decoding process. This creates new demands on the mechanisms of packet marking, and thus new challenges for the policy guaranteeing QoS parameters, such as those defined in the DiffServ architecture. Therefore, mechanisms of the traffic engineering used in the DiffServ network should, as far as possible, take into account internal distribution of priorities inside video streams. This may be achieved by implementing an appropriate method for packet pre-marking. The paper describes the Weighted Priority Pre-marking (WPP) algorithm for priority-aware SVC video streaming over a DiffServ network. Our solution takes into account the relative importance of the Network Abstraction Layer Units. It also does not require any changes in the implementation of the DiffServ marker algorithm. The results presented confirm that video transmission in the DiffServ domain, based on the WPP packet pre-marking, can provide better perceived video quality than the standard (best effort) streaming of multi-layered SVC video. In addition, a comparison with the transmission of the same video content encoded with the H264/AVC codec also points to the superiority of our proposed method. Document type: Articl
    • 

    corecore