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Abstract The H264/SVC codec allows for generation of hierarchical video streams. In the

stream of this type video data belonging to different layers have different priority

depending on their importance to the quality of the video and the decoding process. This

creates new demands on the mechanisms of packet marking, and thus new challenges for

the policy guaranteeing QoS parameters, such as those defined in the DiffServ architecture.

Therefore, mechanisms of the traffic engineering used in the DiffServ network should, as

far as possible, take into account internal distribution of priorities inside video streams.

This may be achieved by implementing an appropriate method for packet pre-marking. The

paper describes the Weighted Priority Pre-marking (WPP) algorithm for priority-aware

SVC video streaming over a DiffServ network. Our solution takes into account the relative

importance of the Network Abstraction Layer Units. It also does not require any changes in

the implementation of the DiffServ marker algorithm. The results presented confirm that

video transmission in the DiffServ domain, based on the WPP packet pre-marking, can

provide better perceived video quality than the standard (best effort) streaming of multi-

layered SVC video. In addition, a comparison with the transmission of the same video

content encoded with the H264/AVC codec also points to the superiority of our proposed

method.
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1 Introduction

IP networks were developed as a transmission environment providing no built-in Quality of

Service (QoS). With the development of Internet services, the problem of defining

mechanisms to guarantee the transmission parameters became an important issue. The

Internet Engineering Task Force (IETF) recommended the Differentiated Service (Diff-

Serv) architecture [1, 2] as one of the methods to guarantee QoS parameters. The idea of

differentiated services is based on a simple model, which classifies IP packets to the

appropriate groups (aggregates) and defines the allocation of a certain amount of for-

warding resources for each aggregate. In recent years DiffServ confirmed its usefulness in

IP networks, offering scalability and manageability. One of the key issues associated with

the efficiency of a DiffServ domain is the process of classification and marking of IP

packets. This process can take place at the data source (pre-marking) or at the edge of the

DiffServ domain. For many years the second solution has been dominant. Edge routers

used the packets marking algorithms in colour-blind mode, i.e. they did not take into

account any outside information about the priority of the analysed IP packets.

The growing popularity of Internet multimedia services was one of the reasons to

change this situation [3]. In this context the crucial role has been played by the devel-

opment of video streaming services and the significant progress in the area of video

encoding algorithms. Currently, the internal structure of video streams is complex and

depends not only on the type of video codec but also on the specifics of a streaming

service. The priority of an individual packet inside the stream is known at the video source

but its reassignment to the packet on the edge of a DiffServ domain becomes extremely

difficult if at all possible. This has resulted in renewed interest in the use of packet pre-

marking and implementation of algorithms for marking in colour-aware mode at the edge

of a DiffServ domain [4], [5]. Pre-marking is especially promising because it allows the

source of a video stream to indicate priority. This opens the possibility to take into account

the specific characteristics of video coding, and protection of these packets, which are of

great importance to maintain an acceptable level of the perceived video quality [6].

Recently, the question of guaranteeing the QoS parameters in video streaming services

has become even more complex. The last few years have brought tremendous development

of multimedia devices and applications. Therefore, it becomes necessary to deliver a real-

time content not only in accordance with static rules defined for a given class of the

network traffic. Attention should also be paid to the different technical parameters of

receivers and thus different expectations of clients regarding to the quality of the received

video. A good example of the solution that meets these requirements is the Dynamic

Adaptive Streaming over HTTP (DASH) standard published by the IETF in 2012 [7]. The

mechanisms of pre-marking and the rules of packet forwarding inside DiffServ domains

should meet the requirements of these relatively new solutions.

Taking into account the diversity of end-user expectations and problems posed by the

characteristics of modern video transmission systems, the Scalable Video Coding (SVC) is

a highly attractive solution for video streaming. It enables the scalability in spatial, tem-

poral, and quality (SNR) domains, while keeping compression at high efficiency [8].

However, at the same time scalability leads to a complex, hierarchical stream structure of

the SVC video. In this structure, the priority of the data depends on the position within the

individual layers as well as on the inter-layer relationships. For this reason, pre-marking

methods developed for H.264/AVC may not be simply and directly applied to the case of a

system for the streaming of the layered video. Therefore, any proposal of the priority-
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aware pre-marking method must be based on the analysis of the new structure of a SVC

stream. Moreover, the verification of a solution should take into account SVC video

streams generated by the standard streaming services as well as by more advanced services

such as DASH. Based on these assumptions, we develop a new Weighted Priority Pre-

marking (WPP) algorithm, which takes into account the relative importance of data within

the SVC video stream and does not require any changes in the DiffServ marker algorithm.

It allows to obtain a better perceived video quality than for SVC video transmission

without pre-marking. The streaming system employing the WPP algorithm also showed

superiority (in terms of the video quality) over the system for the H.264/AVC video

transmission with the TypeMapping pre-marking [9, 10].

The remainder of this paper is organised as follows. The principles of the DiffServ

architecture and the process of the packet marking for video transmission systems is

presented in Sect. 2. Additionally, Sect. 2.2 presents an overview of the promising pro-

posals that relate to the streaming video in a DiffServ domain. Section 3 describes the

coding rules for the Scalable Video Coding. It also contains discussion of the SVC bit

stream ordering and the gradation of the video quality Sect. 3.1. There is the principle of

defining the Operating Point (OP) and the structure of the SVC stream used in video

streaming services based on the DASH standard. The developed WPP pre-marking algo-

rithm is presented in Sect. 4. The description of the testbed, assumptions used during the

simulation (Sect. 5.1) and the experimental results (Sect. 5.2) are in Sect. 5. Finally, a brief

conclusion is made in Sect. 6.

2 Service Differentiation

The primary purpose of the DiffServ architecture was the implementation of scalable

service differentiation in the Internet. The principles of DiffServ have been described in the

RFC2475 [1].The scalability is achieved by aggregating traffic classification state and IP

packets marking using the Differentiated Services (DS) field. That field is located in the IP

packet header. The first three bits of the DS field are used to determine the traffic class,

while the next three define the packets rejection probability. The last two bits are left

unused [11]. All these 6 bits create so called Differentiated Services Code Point (DSCP).

The traffic management, according to the DiffServ model, is carried out only at the

boundary of the DiffServ domain. This means that all operations, such as classification,

marking, policing, and shaping need only be implemented on the border nodes (routers).

Also, classification and marking can be a part of functionality of source hosts (on the nodes

that are sources of the network traffic associated with a given service). Traffic streams of

marked IP packets receive a particular per-hop behaviour (PHB). A particular PHB defines

the allocation of a certain amount of forwarding resources (buffer space and bandwidth) to

these traffic streams along their path. The marked packets may belong to one of four basic

PHB groups depending on DSCP values [11, 12]. These PHB groups are respectively:

• Best Effort—BE

• Assured Forwarding—AF

• Expedited Forwarding—EF

• Class Selector—CS

According to the IETF, a PHB group designed for video streaming is the Assured

Forwarding (AF) [13, 14]. This group offers different levels of forwarding assurances for
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IP packets, while accomplishing a target throughput for each network aggregate. Within

the AF PHB group, IP packets are marked and then forwarded with a specified value of

drop precedence. The DiffServ defines four independent AF classes. Within each AF class,

an IP packet is assigned one of three different levels of drop precedence. In other words, a

single AF PHB group consists of three PHBs, and uses three DSCPs as is shown in Fig. 1.

2.1 Packet Marking

Generally, packet marking is often called packet colouring and refers to the setting of bits

in the DS field which represent dropping precedences. Packets are coloured in green,

yellow and red. In the case of the AF PHB group green means AFx1, yellow AFx2 and red

AFx3. The IETF in RFC4594 [11] recommends AF3x class for services that require near-

real-time packet forwarding of network traffic and are not delay sensitive. These charac-

teristics are consistent with the requirements of video streaming applications. This class

has been featured in Fig. 1 by a thin black border. IETF also recommends that the

applications or IP end points should pre-mark their packets with DSCP values (so called

colour-aware marking) or the router topologically closest to video source should perform

the classification and mark all packets as AF3x (so called blind marking). The most

popular, standard algorithms of packet colouring are as follows:

• Single Rate Three Colour Marker (srTCM) [15],

• Two Rate Three Colour Marker (trTCM) [16],

• The Time Sliding Window Three Colour Marker (TSW3CM) [17].

In order to carry out the task of marking packets belonging to the AF class, IETF

recommended a Two Rate Three Colour Marker (trTCM). The trTCM is a combined

metering and marking algorithm. It consists of two token buckets with the token accu-

mulation rate dedicated to each one of them. The first token bucket (indicated in Fig. 2 as

B1) has the Committed Information Rate (CIR) and the second token bucket (indicated as

B2) has the Peak Information Rate (PIR). The Peak Burst Size (PBS) is used as the size of

the B2 bucket and Committed Burst Size (CBS) is used as the size of the B1 bucket. The

B1 bucket is incremented with the rate of CIR while the B2 bucket is incremented with a

PIR rate. The trTCM can operate in two modes, colour-blind and colour aware respec-

tively. In the case of the colour aware mode, the trTCM assumes that the packets have

already been colored by any previous entity (pre-marking). The algorithm of this operating

Fig. 1 Assured Forwarding (AF) PHB groups as defined in the RFC 2597
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mode is presented in Fig. 2. In the colour-blind mode all incoming packets are treated

equally.

2.2 Related Work

The pre-marking scenario can potentially apply the hierarchical structure of the modern

video stream. It offers a possibility to protect that part of the video stream which is the

most important in terms of quality and effectively react to congestion on transmission

links. Unfortunately, despite the above-mentioned mechanisms and recommendations,

defining the method of pre-marking packets by video source is not a trivial task. Especially

in the case of a SVC video, it requires the analysis of the specific schema of coding, taking

into account the structure of Group of Pictures (GOP) and relevance of GOP components to

the perceived quality of video. Over the last few years, many classifications and marking

strategies have been proposed for different types of video codecs. Regarding today’s most

popular video coding algorithms it is worth pointing out a few promising proposals that

relate to the streaming video data through the DiffServ domain. In the case of the H.264/

AVC codec which is the widely used MPEG standard for video encoding [18, 19] one of

the earliest proposed solutions is to include information about the type of frames in the

packet classification process [20]. Usually, this method involves the simple frame type

mapping (I,P,B) to DCSP values (packet colours) [9, 10]. Other popular proposals are

based on the analysis of the loss impact of frames or slices on video quality. In [21] that

loss is estimated by means of counting how many times the frame is taken as reference by

previous or future elements. Further studies have used the idea of the classification and

marking of packets based on the identification of perceptually important video regions

[22]. Their extension was the proposal of two dimensional analysis of packet loss [23]. In

the first, temporal dimension the significance of a lost packet is computed based on the

estimated error propagation and in the second, spatial dimension, the algorithm computes

the packet significance based on the content complexity. Among the recent and most

commonly cited proposals it is worth paying attention to the solution published in [24]. It

introduces the concept of marking probabilities and methods for their estimations in

conjunction with the relative importance of the IP packet in terms of perceived video

quality and the traffic conditions along the forwarding path.

Fig. 2 Color-aware mode algorithm for TRTCM
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The introduction and acceptance of the new algorithm H.264/SVC [8] made the

selection of a method for packet marking an even more complex issue. One of the visible

changes is the focus of attention not only for pre-marking mechanisms but also for

modification of marking algorithms inside the DiffServ domain. A good example of this

approach is an Enhanced Token Bucket Three Colour Marker (ETBTCM) presented by Ke

et al. [25]. A similar approach can be found in the another proposal, published in [26]. The

Improved Two-Rate Three-Colour Marker (ITRTCM) marks video packets according to

the current vacancy degrees of the token buckets and the relative significance of the

packets. Both markers use a number of thresholds for dividing the relative significance into

a few grades. Unfortunately, the more significant the divisions, the higher the possibility of

a mistake and degradation of preceived video quality. That problem has been partially

solved in [27]. The authors there describe a new marker called Priority-Aware Two-Rate

Three-Colour Marker (PATRTCM) which allows to minimise inaccuracy when the token

count is close to the thresholds. Further development of the use of the ITRTCM marker has

been proposed in [28]. The solution consists of a source marking scheme based on NALU

priorities and ITRTCM as an edge router marker. Another group of solutions is focused on

the QoE-based traffic management techniques for SVC video streaming. Study in [29]

demonstrates the QoE-aware traffic management for scalable mobile video delivery within

the MEDIEVAL architecture. The neuro-fuzzy scheme, described in [30], regulates output

rate using a buffer and ensures that video streams from host to client conform to desired

traffic conditions. The latest developments in this area are also using artificial intelligence

algorithms and based on Software Defined Network principles [31]. Finally, we should also

mention the very promising results of the analysis of traffic patterns [32] that could

potentially allow bonding marking policies and IP traffic behaviour.

3 SVC Coding

Scalable video coding (SVC) introduces the concept of layered video stream. The fun-

damental idea of a SVC is to enable the removal of parts of the coded video data by

rejecting certain layers. The quality and throughput of the video stream depend on the

number of its layers. On the other hand, the process of the layers selection ensures that the

resulting stream will continue to be correctly decoded by the receiver. In order to achieve

this in practice, multi-layer stream of SVC video consists of one base layer (BL) and

several enhancement layers (EL). The terminal devices with different technical parameters

can choose to receive partial stream, e.g., base layer in case of mobile devices, and all

layers for HD screens [8, 33]. The H.264/SVC standard was created as an extension of the

H.264/AVC codec. For this reason, individual layers rely on the principles of the H264/

AVC coding while simultaneously intra-layer relationships provide three types of scala-

bility: temporal, spatial and quality (SNR), respectively. The hierarchical structure of the

SVC stream is presented in Fig. 3.

According to the H.264/SVC, each spatial dependency layer requires a dedicated pre-

diction module to perform both motion-compensated prediction and intra prediction within

the layer. Additionally, the SVC coding algorithm introduces new modules closely related

to the video quality. The first one, the SNR refinement module, provides the mechanisms

for quality scalability within each layer, and the second one, the inter-layer prediction

module, is responsible for the dependency management between subsequent spatial layers.
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As the end result, different temporal, spatial and SNR levels are simultaneously integrated

into a single scalable video stream.

Functionally, the H.264/SVC is divided into two parts, the Video Coding Layer (VCL)

and the Network Abstraction Layer (NAL) [19]. The VCL produces the coded represen-

tation of the source video and the NAL formats these video data by means of the header

information [8]. A NAL unit consists of a header and a payload part. The three fields inside

the header are relevant to the issues discussed: DID (dependency id) which indicates the

inter-layer coding dependency level of a layer representation, QID (quality id) which

indicates the quality level of an SNR layer representation and TID (temporal id) which

indicates the temporal level of a layer representation.

3.1 SVC Bit Stream Ordering and Gradation of Video Quality

For obvious reasons, marking packets belonging to the SVC video stream should lead to

the protection of these layers, whose contribution to the perceived quality of the received

video content is highest. In order to assess the level of this contribution, the relationship

between video quality and the structure of the SVC stream must be analysed. As it was

mentioned earlier, SVC coding provides three types of scalability: temporal, spatial and

quality, respectively. Spatial scalability allows for selection of the video frame size. On the

basis of the tests we carried out, it can be stated that changes of resolution definitely lead to

the negative quality assessment by recipients of a given video content. Even the existing

upscaling algorithms (eg. inside mobile devices and TV sets) only partially reduce this

adverse effect. An impact of changes in resolution, particularly their frequent occurrences

during video playback on the perceived video quality was also investigated in [34, 35]. The

published results indicate a similar observations. Another type of scalability, temporal

scalability, allows for a change of the video stream bit rate by changing the number of

frames per second. Practical implementation of this scalability is doubling the number of

frames per second in each subsequent enhancement layer relative to the base layer.

Unfortunately, the short-term lowering of the video frame rate is not accepted by the end-

users [35, 36]. The SNR scalability is the third type of scalability offered by the SVC

encoding. The H264/SVC standard provides two ways of its implementation. The first one

is the Coarse Grain Scalability (CGS). It employs inter-layer prediction mechanisms

(residual, motion parameters and macroblock mode predictions). The second implemen-

tation is the Medium Grain Scalability (MGS) and it splits each SNR enhancement layer

Fig. 3 Hierarchical SVC stream
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into several sublayers (MGS layers). Thanks to that schema, the finer quality granularity

can be obtained [37].

The hierarchical structure of the SVC stream stresses the need to decide on the method

of determining the priority of the single NALU. This issue is directly related to the

methods of the Fix Priority Ordering (FPO) [39]. Taking into account the specific char-

acteristics of the SVC encoding, obvious solutions are: temporal-based (or frame-based),

spatial-based and SNR-based algorithms, where the video bit stream is arranged first by the

temporal, the spatial and the SNR layer, respectively. It should be noted that in the JSVM

reference software [38] the default bit stream ordering is spatial-based (layer order: spatial-

SNR-temporal). Xiao et al. in [40] presented test results for various FPO configurations.

Their research indicates that for a wide range of bit rates, the best video quality is achieved

for the temporal-based FPO (layer order: temporal-spatial-SNR) or SNR-based (layer

order: SNR-temporal-spatial). They also proposed the adaptive FPO (APO) configuration.

The APO method arranges the H.264/SVC bit stream according to contribution of different

layers to the whole performance within a given Group of Pictures (GoP). Unfortunately,

since each GoP may have different characteristics, the optimal bit stream may vary from

one GoP to the other in the same video sequence.

3.2 Gradation of Video Quality

Another issue to be considered in the context of the application of SVC coding in video

streaming applications is that the GOP structure does not necessarily include all possible

layers. A good example of such behaviour is the adaptation mechanism defined in the

DASH standard [7]. It can be described as a process of elimination of certain enhancement

layers or as a change of Operation Point (OP) of a given SVC stream. In the first Operation

Point OP1 each GOP includes a full set of video data. Removal of the individual

enhancement layers leads to define the next OPs. Of course, the process of removal of

certain layers must take into account the existing dependencies between them. For

example, one cannot remove the layers which are used as references for any others.

Switching between the OPs allows to adjust the the bit rate of SVC video stream to

conditions on the transmission link. Figure 4 illustrates an exemplary internal structure of

the GOP for OP1 and OP5.

Fig. 4 The internal structure of the GOP for OP1 and OP5
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In the case illustrated in Fig. 4, theGOPconsists of five frames and contains three temporal

layers (T0–T2) and four SNR layers (SNR0 - SNR3). The number 0 indicates the base layer.

The Fig. 4 does not show the spatial layer because it was assumed that the stream represents

video with a resolution of the near (but not exceeding) resolution supported by the receiving

device. This choice should not be changed by the adaptation process. According to the

information mentioned above and our own research results, temporal layers should also be

protected. This leads to the solution in which the decoder should have, for each of temporary

layer, at least a minimum set of video data (base layer SNR0). Because each temporal layer is

associatedwith a double number of frames per second, this assumptionmaintains a high level

of video smoothness. In summary, the set of OPs are defined by removing successive SNR

layers. This scheme to define the structure of the SVC stream allows to provide the best

quality of received video content [40, 41]. The internal structure of the GOP for OP5, defined

according to the above assumption is also shown in Fig. 4. As was stated at the beginning, the

illustration presented applies if the spatial and temporal layers are to be protected. Of course,

in the same way different sets of OPs can be created, preferring other layers of the SVC

stream. Detailed analysis of quality gradation byOP section can be found in [41]. All possible

OPs for a particular SVC video stream can be specified as it is done in Fig. 5. The illustrated

exemplary structure of the video stream is analogous to the previous example (includes three

temporary layers and four SNR layers for each of them).

The combination of the need to determine the priority of the single NALU (to protect

the selected layers) and the possibilities for creating OPs leads to defining a set of scalable

SVC video streams which can potentially be transmitted over an IP network using DiffServ

rules. Therefore, three FPO configurations (JSVM default and best two from [40]) and a

full set of OPs for each of FPO were selected for further testing.

4 Weighted Priority Pre-marking

The video packets need to be classified into different priorities according to their relative

importance before any pre-marking algorithm can be applied. Let us assume that the relative

importance of the NALU is represented by ðSi; SNRj; TkÞ where Si is the i-th spatial layer,

SNRj is the j-th quality layer and Tk is the k-th temporal layer. Let PðSi; SNRj; TkÞ be the

priority of the NALU.We assign theweights to the individual layers by giving values 1, 2 and

Fig. 5 Definition of OPs for SVC video stream
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3 to the most important scalability layer, less important scalability layer and the least

important scalability layer, respectively. In such a case, the priority for a given NALU can be

expressed by Formula (1)

PðSi; SNRj; TkÞ ¼ WSSi þWSNRSNRj þWTTk ð1Þ

where WS, WSNR, WT are weights for spatial, SNR and temporal layers, respectively.

Assigning weight values for each type of scalability layers of the video stream depends

on the particular provider of video streaming service. This choice is important because it

affects the priority of the subsequent extended layers. The higher the weight value, the

quicker decreases the priority assigned to successive, extended layers, which represent a

particular scalability. In other words, this choice has a direct influence on the quality of the

video. Therefore, Sect. 5 presents the experimental verification of our theoretical

assumptions (see Sect. 3) for the most popular streaming schemes based on the H264/SVC.

In order to use the DiffServ marking algorithm trTCM in colour-aware mode, the

mapping of priorities to the three colours (DSCP codes) is necessary. Constructing the

principle of such mapping, we took into account two main reasons:

• if an operator of a video service decides to increase (or decrease) the number of

extended layers inside the SVC streams, the policy of the priority mapping should also

be modified. A number of protected layers that are most important to preserve the best

possible perceived quality of the received video, should grow with the increasing

number of OPs,

• in a case of congestion on the transmission path, the final decision to change the

priority belongs to the mechanism of packet colouring which is implemented on the

edge of a DiffServ domain. The even distribution of the packets between different

groups (colors) should be a neutral solution from the point of view of the potential

competition for the available bandwidth between the multiple data and video streams.

Taking into account the above issues, we proposed the following solution. Let H be the

highest value of priority calculated according to Formula (1) for a given structure of the

OP. The priority after mapping can be obtained using the formula as follows.

PmappedðSi; SNRj; TkÞ ¼
3

H
PðSi; SNRj; TkÞ

� �
ð2Þ

The last step is to apply the following rules of marking:

• if PmappedðSi; SNRj; TkÞ� 1 then use pre-marking as green,

• if PmappedðSi; SNRj; TkÞ ¼ 2 then use pre-marking as yellow,

• if PmappedðSi; SNRj; TkÞ ¼ 3 then use pre-marking as red.

That algorithm consists of Formula (1), Formula (2) and the scheme of packet colouring,

we namedWeighted Priority Pre-marking (WPP). Figure 6 shows theWPP algorithm and its

use in a video streaming system based on the H264/SVC and the principles of the standard

DASH. The provider of theDASH streaming servicemust determine the structure of the SVC

stream (OP1) and the priorities attached to particular types of scalability (weight values).

Based on these assumptions, the highest value of priority is calculated (value of H). Weight

values and the parameter H are necessary for operation of theWPP algorithm.Next, the video

content is encoded using encoder H264/SVC and divided into chunks in accordance with the

standard DASH. Each request generated by a client of the DASH streaming service leads to

the necessity of sending the video fragment with specific parameters. According to the
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principles of adaptation DASH these parameters can vary between successive requests. This

means that it is necessary to determine, in each such case, the new OP of the SVC stream. At

this stage, the final structure of the video stream is known. The system is ready for the process

of packet pre-marking according to the algorithm WPP.

5 Test Scenarios

The main aim of the tests is to determine the properties of the proposed WPP algorithm in

combination with different methods of packet pre-marking. For this purpose, the video

streams have been generated for the three SVC FPO bit streams ordering with a full set of

OPs. The packets belonging to these streams were then pre-marked (colored). Finally, they

were sent through the DiffServ domain, which uses the trTCM marker in colour-aware

mode. Therefore, the video quality was analysed for following schemas:

• S-SNR-T: WPP pre-marking order S-green, SNR-yellow, T-red (JSVM default)

• T-S-SNR: WPP pre-marking order T-green, S-yellow, SNR-red

• SNR-T-S: WPP pre-marking order SNR-green, T-yellow, S-red

Fig. 6 The use of the WPP algorithm in a video streaming system based on the H264/SVC coder and the
principles of the DASH
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The conclusion of these tests we used as a starting point for the comparative analysis of

the proposed WPP algorithm. The best WPP configuration is compared with two other

scenarios of the video transmission in the DiffServ domain. The first one is the trans-

mission of the pre-marked stream of single layer H.264/AVC video [9, 10] and the second

one is the transmission of the SVC stream without pre-marking. All the compared solutions

were tested at the comparable network configuration and used the same video source.

5.1 Testbed Configuration

The coding part of the testbed system is built up on the basis of the JSVM [38, 42]. The

network part consists of two elements: the software framework SVEF [43] and the network

simulator GNS3. The first one, the EVEF, allows to obtain the desired order in the SVC bit

streams and was responsible for the proper generation and processing of the SVC traces.

This packet has also been used to estimate the quality of the transmitted video. The

DiffServ domain was implemented in GNS3. The trTCM marker (in color-aware mode)

was configured on the ingress router. The structure of the developed testbed is presented in

Fig. 7.

The test video was a Foreman sequence, which has 2000 frames with a GoP size of 8.

The structure of the stream consists of the following layers:

• spatial (SL0—QCIF, SL1—CIF, SL2—CIF)

• temporal for SL0 and SL1 (TL0—3.75 Hz, TL1—7.5 Hz, TL2—15.0 Hz)

• temporal for SL2 (TL0—3.75 Hz, TL1—7.5Hz, TL2—15.0 Hz, TL3—30Hz)

• SNR (3 SNRL layers: BL and two EL for each spatial-temporal layer)

Fig. 7 The testbed structure
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The above video bit stream has competed with one ON-OFF background traffic flow,

which had an exponential distribution with the mean packet size of 1000 bytes, burst time

200 ms, idle time of 50 ms, and the rate of 500 kbps. The test network also transmitted one

FTP traffic flow of 640 kbps. The DiffServ routers implemented the Weighted Random

Early Detection (WRED) mechanism for active queue management. The WRED param-

eters include a minimum threshold, a maximum threshold, and a maximum drop proba-

bility. In our simulations, these parameters were specified respectively as 2, 4, 0.1 for red

packets, 4, 6, 0.05 for yellow packets, and 6, 8, 0.025 for green packets. The final

assessment of video quality was based on PSNR metrics.

5.2 Simulation Results

The selection of WPP configuration. At this phase, all three selected pre-marking strategies

have been simulated for the AF PHB overload ranging from 1.0 to 1.2. Each test was

repeated 20 times and the average values of the received PSNR are presented in Fig. 8.

Analysing the results shown in the Fig. 8, it is difficult to identify a clear winner. From

the perspective of the typical IP network behaviour, it seems to be reasonable to con-

centrate on the area of small and medium-size congestions. With respect to the simulation

performed, it is the range of congestion from 1.05 to 1.15. In this area the best quality

guarantee methods of protecting data are associated mainly with the SNR and the spatial

layers. This is also true for OPs. The protection of SNR layers allows for maintaining a

relatively small decline in the video quality for a few first OPs. Similarly, in the case of

small and medium-sized congestion, adaptation mechanisms that operate on the OPs

should mostly use the first few of them. That was confirmed by our separate research [41],

when the standard DASH adaptation mechanism was configured for the same video

configurations and network conditions, operating on the first three OPs. We can then state

that the OPs from OP1 to OP3 are the most probable structure of the SVC GOP for video

streaming applications. For this reason, in the next phase, the WPP configuration SNR-T-S

was selected for the comparative analysis.

Comparative analysis of proposed WPP algorithm. Based on results from previous tests,

the weights in Eq. 1 are assigned values, 1 for the SNR layer, 2 for the spatial layer and 3

for the temporal layer. Next, the priority for any given NALU were calculated according to

the Eq. 1. The H coefficient has value 15 for the video sequences used (the least important

triple in the Foreman sequence is (2,2,3) therefore H ¼ 1 � 2þ 2 � 2þ 3 � 3). The last step
was to apply the rules of marking presented in Sect. 4.

To justify our algorithm, the simulation results for the video transmission of the SVC

stream with the WPP pre-marking have been compared to the transmission of the SVC

sequence without pre-marking (trTCM was configured in blind mode) and the video coded

by the H.264/AVC coder with pre-marking based on simple frame type mapping (I,P,B)

[9, 10]. In all the cases the Foreman video sequence was used. The simulation results are

shown in Table 1.

In the case of using WPP pre-marking, the video quality improvement is observed for

relatively small values of congestion (especially in the range from 1.0 to 1.1). This is due to

better protection of spatial and SNR layers. Without pre-marking, the mechanism inside

the transmission system cannot protect the low and the lowest layers very well and at the

same time losses of higher spatial and SNR layers are relatively high so end-user has little

or no benefit from the SVC coding. The transmission of the H.264/AVC video with random

losses of P and B macroblocks (pre-marking algorithm preferred I frames) causes

numerous errors in the mechanisms of motion vectors reconstruction and inter-frame
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prediction. These phenomena very quickly (for relatively small values of overload)

manifest themselves as important video quality degradation. For the higher values of

congestion, the advantage of SVC over AVC coding slowly disappears. The same can be

said about the relationship between transmission with and without pre-marking. Even the

WPP algorithm cannot prevent loss of a substantial part of video data.

Practical aspects of the implementation of the algorithm WPP During all of the tests,

the elements of a typical video streaming system were used. This applies to both

Fig. 8 Y-PSNR for different test scenarios and for different values of AF PHB overload obtained for
selected OPs
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components responsible for the distribution of video and data transmission. The DiffServ

domain was based on the operating system fully compatible with commercial systems used

by the routers Cisco 2900 series. The algorithms of the packet marking, queuing and the

rules of the dynamic routing are configured as recommended for typical network operators.

Also, the video distribution system was based on the reference software JSVM [42]. For

this reason, focusing on practical aspects of the implementation of the algorithm WPP, we

can conclude that:

• The proposed solution can be implemented in existing video streaming services based

on the standard H264/SVC and DASH,

• WPP algorithm works fine with a typical network infrastructure that supports DiffServ

mechanisms and the packet marking in accordance with the algorithm trTCM (color-

aware mode).

6 Conclusion

In this paper the relationship between the relative importance of NALUs and the packet

pre-marking for the H.264/SVC video has been studied. We proposed the Weighted Pri-

ority Pre-marking algorithm for colour-aware SVC video streaming over the DiffServ

network. This algorithm has been tested for different bit stream ordering and operation

point scenarios. Selected scenarios reflect the typical use of SVC coding in today’s video

streaming applications. In contrast to other proposed solutions, our approach is consistent

with the DiffServ model and does not require changing the marking schema at the edge of

the DiffServ domain. Thus, the proposed algorithm can be applied to any IP network using

the principles of the service differentiation.

By comparing the simulation results with the standard streaming solution based on

single layer H.264/AVC and best-effort H.264/SVC transmission, a simple conclusion can

be drawn that the proposed pre-marking algorithm can well reflect the relative importance

inside the SVC video stream and allows users to take advantage of the scalability extension

of H.264/SVC.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Table 1 Comparison of Y-PSNR in different video streaming scenarios

Scenario Link overload

105 % 110 % 115 %

AVC with frame-type based pre-marking 32.4 dB 27.2 dB 25.5 dB

SVC without pre-marking (OP1) 32.5 dB 29.6 dB 27.1 dB

SVC with WPP pre-marking (OP1) 36.1 dB 31.2 dB 27.8 dB
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