5,905 research outputs found

    Speeding Up the Estimation of Expected Maximum Flows Through Reliable Networks

    Get PDF
    In this paper we present a strategy for speeding up the estimation of expected maximum flows through reliable networks. Our strategy tries to minimize the repetition of computational effort while evaluating network states sampled using the crude Monte Carlo method. Computational experiments with this strategy on three types of randomly generated networks show that it reduces the number of flow augmentations required for evaluating the states in the sample by as much as 52% on average with a standard deviation of 7% compared to the conventional strategy. This leads to an average time saving of about 71% with a standard deviation of about 8%.

    Maximum Skew-Symmetric Flows and Matchings

    Full text link
    The maximum integer skew-symmetric flow problem (MSFP) generalizes both the maximum flow and maximum matching problems. It was introduced by Tutte in terms of self-conjugate flows in antisymmetrical digraphs. He showed that for these objects there are natural analogs of classical theoretical results on usual network flows, such as the flow decomposition, augmenting path, and max-flow min-cut theorems. We give unified and shorter proofs for those theoretical results. We then extend to MSFP the shortest augmenting path method of Edmonds and Karp and the blocking flow method of Dinits, obtaining algorithms with similar time bounds in general case. Moreover, in the cases of unit arc capacities and unit ``node capacities'' the blocking skew-symmetric flow algorithm has time bounds similar to those established in Even and Tarjan (1975) and Karzanov (1973) for Dinits' algorithm. In particular, this implies an algorithm for finding a maximum matching in a nonbipartite graph in O(nm)O(\sqrt{n}m) time, which matches the time bound for the algorithm of Micali and Vazirani. Finally, extending a clique compression technique of Feder and Motwani to particular skew-symmetric graphs, we speed up the implied maximum matching algorithm to run in O(nmlog(n2/m)/logn)O(\sqrt{n}m\log(n^2/m)/\log{n}) time, improving the best known bound for dense nonbipartite graphs. Also other theoretical and algorithmic results on skew-symmetric flows and their applications are presented.Comment: 35 pages, 3 figures, to appear in Mathematical Programming, minor stylistic corrections and shortenings to the original versio

    Computational investigations of maximum flow algorithms

    Get PDF
    "April 1995."Includes bibliographical references (p. 55-57).by Ravindra K. Ahuja ... [et al.

    New distance-directed algorithms for maximum flow and parametric maximum flow problems

    Get PDF
    "July 1987."Bibliography: p. 34-36.Supported, in part, by the Presidential Young Investigator Grant of the National Science Foundation. 8451517-ECS Supported, in part, by a grant from Analog Devices, Apple Computer,Inc., and Prime Computer.J. B. Orlin and Ravindra K. Ahuja

    Weighted Matchings via Unweighted Augmentations

    Full text link
    We design a generic method for reducing the task of finding weighted matchings to that of finding short augmenting paths in unweighted graphs. This method enables us to provide efficient implementations for approximating weighted matchings in the streaming model and in the massively parallel computation (MPC) model. In the context of streaming with random edge arrivals, our techniques yield a (1/2+c)(1/2+c)-approximation algorithm thus breaking the natural barrier of 1/21/2. For multi-pass streaming and the MPC model, we show that any algorithm computing a (1δ)(1-\delta)-approximate unweighted matching in bipartite graphs can be translated into an algorithm that computes a (1ε(δ))(1-\varepsilon(\delta))-approximate maximum weighted matching. Furthermore, this translation incurs only a constant factor (that depends on ε>0\varepsilon> 0) overhead in the complexity. Instantiating this with the current best multi-pass streaming and MPC algorithms for unweighted matchings yields the following results for maximum weighted matchings: * A (1ε)(1-\varepsilon)-approximation streaming algorithm that uses Oε(1)O_\varepsilon(1) passes and Oε(npoly(logn))O_\varepsilon(n\, \text{poly} (\log n)) memory. This is the first (1ε)(1-\varepsilon)-approximation streaming algorithm for weighted matchings that uses a constant number of passes (only depending on ε\varepsilon). * A (1ε)(1 - \varepsilon)-approximation algorithm in the MPC model that uses Oε(loglogn)O_\varepsilon(\log \log n) rounds, O(m/n)O(m/n) machines per round, and Oε(npoly(logn))O_\varepsilon(n\, \text{poly}(\log n)) memory per machine. This improves upon the previous best approximation guarantee of (1/2ε)(1/2-\varepsilon) for weighted graphs

    Faster Algorithms for Semi-Matching Problems

    Full text link
    We consider the problem of finding \textit{semi-matching} in bipartite graphs which is also extensively studied under various names in the scheduling literature. We give faster algorithms for both weighted and unweighted case. For the weighted case, we give an O(nmlogn)O(nm\log n)-time algorithm, where nn is the number of vertices and mm is the number of edges, by exploiting the geometric structure of the problem. This improves the classical O(n3)O(n^3) algorithms by Horn [Operations Research 1973] and Bruno, Coffman and Sethi [Communications of the ACM 1974]. For the unweighted case, the bound could be improved even further. We give a simple divide-and-conquer algorithm which runs in O(nmlogn)O(\sqrt{n}m\log n) time, improving two previous O(nm)O(nm)-time algorithms by Abraham [MSc thesis, University of Glasgow 2003] and Harvey, Ladner, Lov\'asz and Tamir [WADS 2003 and Journal of Algorithms 2006]. We also extend this algorithm to solve the \textit{Balance Edge Cover} problem in O(nmlogn)O(\sqrt{n}m\log n) time, improving the previous O(nm)O(nm)-time algorithm by Harada, Ono, Sadakane and Yamashita [ISAAC 2008].Comment: ICALP 201

    Cut Tree Construction from Massive Graphs

    Full text link
    The construction of cut trees (also known as Gomory-Hu trees) for a given graph enables the minimum-cut size of the original graph to be obtained for any pair of vertices. Cut trees are a powerful back-end for graph management and mining, as they support various procedures related to the minimum cut, maximum flow, and connectivity. However, the crucial drawback with cut trees is the computational cost of their construction. In theory, a cut tree is built by applying a maximum flow algorithm for nn times, where nn is the number of vertices. Therefore, naive implementations of this approach result in cubic time complexity, which is obviously too slow for today's large-scale graphs. To address this issue, in the present study, we propose a new cut-tree construction algorithm tailored to real-world networks. Using a series of experiments, we demonstrate that the proposed algorithm is several orders of magnitude faster than previous algorithms and it can construct cut trees for billion-scale graphs.Comment: Short version will appear at ICDM'1
    corecore