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COMPUTATIONAL INVESTIGATIONS OF MAXIMUM FLOW
ALGORITHMS

Ravindra K. Ahuja, Murali Kodialam, Ajay K. Mishra, and James B. Orlin

ABSTRACT

The maximum flow algorithm is distinguished by the long line of successive contributions

researchers have made in obtaining algorithms with incrementally better worst-case complexity. Some, but

not all, of these theoretical improvements have produced improvements in practice. The purpose of this

paper is to test some of the major algorithmic ideas developed in the recent years and to assess their utility

on the empirical front. However, our study differs from previous studies in several ways. Whereas previous

studies focus primarily on CPU time analysis, our analysis goes further and provides detailed insight into

algorithmic behavior. It not only observes how algorithms behave but also tries to explain why algorithms

behave that way. We have limited our study to the best previous maximum flow algorithms and some of

the recent algorithms that are likely to be efficient in practice. Our study encompasses ten maximum flow

algorithms and five classes of networks. The augmenting path algorithms tested by us include Dinic's

algorithm, the shortest augmenting path algorithm, and the capacity scaling algorithm. The preflow-push

algorithms tested by us include Karzanov's algorithm, three implementations of Goldberg-Tarjan

algorithm, and three versions of Ahuja-Orlin-Tarjan excess-scaling algorithms. Among many findings, our

study concludes that the preflow-push algorithms are substantially faster than other classes of algorithms,

and the highest-label preflow-push algorithm is the fastest maximum flow algorithm for which the

growth rate in the computational time is O(n1 5) on four out of five of our problem classes. Further, in

contrast to the results of the worst-case analysis of maximum flow algorithms, our study finds that the time

to perform relabel operations (or constructing the layered networks) takes at least as much computation time

as that taken by augmentations and/or pushes.
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1. INTRODUCTION

The maximum flow problem is one of the most fundamental problems in network optimization. Its

intuitive appeal, mathematical simplicity, and wide applicability has made it a popular research topic

among mathematicians, operations researchers and computer scientists.

The maximum flow problem arises in a wide variety of situations. It occurs directly in problems as

diverse as the flow of commodities in pipeline networks, parallel machine scheduling, distributed

computing on multi-processor computers, matrix rounding problems, baseball elimination problem, and the

statistical security of data. The maximum flow problem also occurs as a subproblem while solving more

complex problems such as the minimum cost flow problem and the generalized flow problem. The maximum

flow problem also arises in combinatorics, with applications to network connectivity, and to matchings and

coverings in bipartite networks. The book by Ahuja, Magnanti and Orlin [1993] describes these and other

applications of the maximum flow problem.

Due to its wide applicability, designing efficient algorithms for the maximum flow problem has

been a popular research topic. The maximum flow problem is distinguished by the long line of successive

contributions researchers have made in obtaining algorithms with incrementally better worst-case

complexity (see, e.g., Ahuja, Magnanti and Orlin [1993] for a survey of these contributions). Indeed, no other

fundamental network optimization problem has witnessed as many incremental improvements in solution

techniques as has the maximum flow problem. Some, but not all, of these theoretical improvements have

produced improvements in practice. The purpose of this paper is to test some of the major algorithmic ideas

developed in recent years and to assess their utility in practice.

Prior to the advent of preflow-push algorithms due to Goldberg and Tarjan [1986], Dinic's [1970] and

Karzanov's [1974] algorithms were considered to be the fastest maximum flow algorithms. Subsequent

developments from 1974 to 1986 included several algorithms with improved worst-case complexity, but

these theoretical improvements did not translate into empirically faster algorithms. The novel concept of

distance labels, in contrast to the layered (or, referent) network concept in Dinic's and Karzanov's

algorithms, proposed by Goldberg and Tarjan [1986] led to breakthroughs both theoretically as well as

empirically. Using distance labels in preflow-push algorithms, Goldberg and Tarjan [1986], and

subsequently, Ahuja and Orlin [1989], Ahuja, Orlin and Tarjan [1989], Cheriyan and Hagerup [1989], and Alon

[1990], obtained maximum flow algorithms with incrementally improved worst-case complexities. Some of

these algorithms are also substantially faster than Dinic's and Karzanov's algorithms empirically, as the

computational testings of Derigs and Meier [1989] and Anderson and Setubal [1992] revealed.

In this paper, we present the results of an extensive computational study of maximum flow

algorithms. Our study differs from the previous computational studies in several ways. Whereas the

previous studies focus primarily on CPU time analysis, our analysis goes farther and provides detailed

insight into algorithmic behavior. It observes how algorithms behave and also tries to explain the

behavior. We perform our empirical study using the representative operation counts, as presented in Ahuja

and Orlin [1995], and Ahuja, Magnanti and Orlin [1993]. The use of representative operation counts allows us
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(i) to identify bottleneck operations of an algorithm; (ii) to facilitate the determination of the growth rate

of an algorithm; and (iii) to provide a fairer comparison of algorithms. This approach is one method of
incorporating computation counts into an empirical analysis.

We have limited our study to the best previous maximum flow algorithms and some recent
algorithms that are likely to be efficient in practice. Our study encompasses ten maximum flow algorithms

whose discoverers and worst-case time bounds are given in Table 1.1. In the table, we denote by n, the number

of nodes; by m, the number of arcs; and by U, the largest arc capacity in the network. For Dinic's and
Karzanov's algorithm, we used the computer codes developed by Imai [1983], and for other algorithms we

developed our own codes.

Table 1. 1 Worst-case bounds of algorithms investigated in our study.

We tested these algorithms on a variety of networks. We carried out extensive testing using grid

and layered networks, and also considered the DIMACS benchmark instances. We summarize in Tables 1.2

and 1.3 respectively the CPU times taken by the maximum flow algorithms to solve maximum flow problems

on layered and grid networks. Figure 1.1 plots the CPU times of some selected algorithms applied to the

grid networks. From this data and the additional experiments described in Sections 10 and 11, we can draw

several conclusions, which are given below. These conclusions apply to problems obtained using all network

generators, unless stated otherwise.

S.No. Algorithm Discoverer(s) Running Time
1. Dinic's algorithm Dinic [19701 O(n 2 m)
2. Karzanov's algorithm Karzanov [1974] O(n3 )
3. Shortest augmenting

path algorithm Ahuja and Orlin [1991] O(n2 m)
4. Capacity scaling algorithm Gabow [1985] and O(nm log U)

Ahuja and Orlin [1991]

Preflow-push algorithms
5. Highest-label algorithm Goldberg and Tarjan [1986] O(n2 ml/2 )
6. FIFO algorithm Goldberg and Tarjan [19861 O(n3 )
7. Lowest-label algorithm Goldberg and Tarjan [1986] O(n 2 m)

Excess-scaling algorithms
8. Original excess-scaling Ahuja and Orlin [1989] O(nm + n2 logU)

n21
9. Stack-scaling algorithm Ahuja, Orlin and Tarjan [1989] Onm + log logU)

10. Wave-scaling algorithm Ahuja, Orlin and Tarjan [1989] O(nm + n2 )



Shortest PREFLOW-PUSH EXCESS SCALING
Aug. Capacity Dinic Highest FIFO Lowest Excess Stack Wave Karzanov

n d Path Scaling Label Label Scaling Scaling Scaling

500 4 0.21 0.62 0.24 0.06 0.08 0.17 0.14 0.13 0.15 0.14
1000 4 0.67 2.05 0.72 0.15 0.20 0.52 0.36 0.31 0.37 0.40
2000 4 2.09 5.84 2.19 0.33 0.49 1.60 0.94 0.75 0.93 1.19
3000 4 3.96 11.52 4.14 0.50 0.80 3.23 1.59 1.21 1.63 2.36
4000 4 7.27 20.63 7.78 0.70 1.29 6.25 2.71 1.93 2.79 4.81
5000 4 13.00 52.97 13.80 0.90 2.67 12.78 5.91 3.70 6.50 9.84
6000 4 11.47 34.52 12.11 1.05 1.84 9.24 4.05 2.78 4.14 6.99
7000 4 15.45 41.26 16.37 1.30 2.44 13.20 5.26 3.61 5.43 9.67
8000 4 19.78 62.30 21.01 1.59 2.98 17.98 6.71 4.50 7.13 13.21
9000 4 26.77 78.22 28.47 1.77 4.16 25.67 9.08 5.87 10.06 18.55
10000 4 25.64 68.45 27.52 1.78 3.74 22.88 8.91 5.79 9.33 16.43
Mean 11.48 34.40 12.21 0.92 1.88 10.32 4.15 2.78 4.41 7.60

500 6 0.41 1.03 0.45 0.09 0.11 0.32 0.20 0.17 0.21 0.23
1000 6 1.20 3.12 1.27 0.19 0.26 0.95 0.49 0.39 0.48 0.58
2000 6 3.58 8.09 3.83 0.40 0.59 2.94 1.29 0.90 1.28 1.76
3000 6 6.46 13.78 6.86 0.61 0.92 5.22 2.19 1.42 2.03 3.00
4000 6 10.76 23.65 11.45 0.87 1.51 9.21 3.54 2.29 3.39 5.34
5000 6 13.78 26.71 14.93 1.06 1.66 11.33 4.38 2.68 4.19 6.45
6000 6 19.22 38.36 20.30 1.32 2.20 16.54 6.11 3.63 5.92 9.43
7000 6 27.22 57.09 29.30 1.56 3.16 25.09 8.86 5.09 9.03 14.76
8000 6 34.63 76.31 37.47 1.88 3.76 32.41 10.59 6.06 10.48 18.64
9000 6 29.04 47.88 31.14 1.74 2.93 22.76 8.43 4.96 7.51 12.01
10000 6 46.79 107.92 49.81 2.30 5.15 44.33 14.58 8.11 14.91 26.03
Mean 17.55 36.72 18.80 1.09 2.02 15.55 5.52 3.25 5.40 8.93

500 8 0.51 1.38 0.55 0.11 0.13 0.40 0.23 0.19 0.22 0.22
1000 8 1.46 3.45 1.59 0.22 0.29 1.14 0.56 0.42 0.53 0.61
2000 8 4.41 8.06 4.65 0.47 0.59 3.34 1.43 0.94 1.27 1.43
3000 8 8.63 16.22 9.13 0.74 0.97 6.69 2.55 1.58 2.27 3.05
4000 8 15.20 30.68 15.93 1.04 1.73 12.89 4.74 2.73 4.55 6.43
5000 8 23.68 56.43 25.09 1.46 3.19 21.47 7.27 4.21 7.52 11.82
6000 8 26.66 45.67 28.90 1.61 2.46 22.46 7.53 4.22 7.09 10.94
7000 8 41.92 83.05 45.42 2.02 4.22 38.63 12.76 6.66 12.98 20.60
8000 8 42.94 84.73 46.51 2.12 3.78 37.47 12.00 6.46 11.77 19.42
9000 8 55.32 108.73 59.83 2.57 5.46 50.98 16.03 8.44 16.39 27.47
10000 8 68.36 149.13 72.52 2.91 6.79 64.73 20.33 10.17 21.55 32.72
Mean 26.28 53.41 28.19 1.39 2.69 23.66 7.77 4.18 7.83 12.25

500 10 0.62 1.56 0.70 0.11 0.13 0.48 0.25 0.20 0.24 0.26
1000 10 1.71 3.59 1.93 0.26 0.30 1.35 0.59 0.44 0.54 0.58
2000 10 6.11 11.37 6.42 0.58 0.76 4.82 1.84 1.19 1.69 2.18
3000 10 10.34 16.75 11.57 0.84 1.07 8.17 2.94 1.78 2.57 3.62
4000 10 17.93 33.02 18.87 1.22 1.72 14.54 4.80 2.74 4.40 6.12
5000 10 23.56 43.23 25.85 1.47 1.94 18.79 6.03 3.34 5.39 7.97
6000 10 39.72 83.89 41.46 2.01 4.03 35.53 11.28 6.03 11.56 17.08
7000 10 44.22 75.38 47.23 2.16 3.30 36.54 11.55 5.88 10.68 16.41
8000 10 59.80 121.97 63.52 2.56 5.12 52.03 16.18 8.11 15.81 25.14
9000 10 64.85 118.98 69.94 2.72 4.70 54.64 17.49 8.47 16.81 24.73
10000 10 99.24 220.78 106.80 3.41 10.08 94.28 31.02 13.65 32.08 48.50
Mean 33.46 66.41 35.84 1.58 3.01 29.20 9.45 4.71 9.25 13.87

Table 1.2. CPU time (in seconds on Convex) taken by algorithms on the layered network.
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Table 1.3. CPU time (in seconds on Convex) taken by algorithms on the grid network.

I Grid Network I Shortest Augmenting Path

Dinic

Lowest Label
Karzanov

Stack Scaling

FIFO

Highest Label

500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n N

Figure 1.1. CPU time (in seconds) taken by the algorithms on grid network.

Shortest PREFLOW-PUSH EXCESS SCALING
Aug. Capacity Dinic Highest FIFO Lowest Excess Stack Wave Karzanov

n d Path Scaling Label Label Scaling Scaling Scaling

500 5 0.41 1.71 0.39 0.11 0.15 0.27 0.21 0.21 0.23 0.33
1000 5 1.25 4.81 1.27 0.28 0.38 0.82 0.54 0.54 0.58 1.02
2000 5 3.84 15.17 3.97 0.76 1.12 2.62 1.54 1.47 1.68 3.18
3000 5 7.80 33.39 7.14 1.32 1.97 5.29 2.60 2.49 2.80 5.54
4000 5 15.89 74.02 13.82 1.98 3.14 11.67 4.50 4.01 4.93 12.37
5000 5 19.74 93.14 18.30 2.89 4.31 13.20 5.69 5.30 6.24 14.33
6000 5 26.80 110.53 24.61 3.65 5.80 21.31 7.86 7.29 8.72 20.05
7000 5 33.09 137.19 31.64 4.25 6.74 26.35 9.52 8.60 10.58 25.99
8000 5 39.07 167.13 40.24 4.88 8.11 30.13 11.36 10.26 12.82 31.61
9000 5 46.81 202.26 42.18 5.55 9.53 36.83 12.91 11.81 14.40 35.85
10000 5 67.48 283.88 57.37 6.94 11.43 52.41 16.40 14.85 18.24 51.58
Mean 23.83 102.11 21.90 2.96 4.79 18.26 6.65 6.07 7.38 18.35
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1. The preflow-push algorithms generally outperform the augmenting path algorithms and their relative

performance improves as the problem size gets bigger.

2. Among the three implementations of the Goldberg-Tarjan preflow-push algorithms we tested, the

highest-label preflow-push algorithm is the fastest. In other words, among these three algorithms, the

highest-label preflow-push algorithm has the best worst-case complexity while simultaneously having

the best empirical performance.

3. In the worst-case, the highest-label preflow-push algorithm requires O(n2 \Fm), but its empirical running

time is 0(n 1 5 ) on four of the five classes of problems that we tested.

4. All the preflow-push algorithms have a set of two "representative operations": (i) performing pushes;

and (ii) relabels of the nodes. We describe representative operations in Section 5 of this paper. See also

Ahuja and Orlin [1995]. Though in the worst-case, performing the pushes is the bottleneck operation, we

find that empirically this time is no greater than the relabel time. This observation suggests that the

dynamic tree implementations of the preflow-push algorithms worsen the running time in the practice,

though they improve the worst-case running time.

5. We find that the number of nonsaturating pushes is .8 to 6 times the number of saturating pushes.

6. The excess-scaling algorithms improve the worst-case complexity of the Goldberg-Tarjan preflow-push

algorithms, but this does not lead to an improvement empirically. We observed that the three excess-

scaling algorithms tested by us are somewhat slower than the highest-label preflow-push algorithm. We

find the stack-scaling algorithm to be the fastest of the three excess-scaling algorithms, but it is on the

average twice slower than the highest-label preflow-push algorithm.

7. The running times of Dinic's algorithm and the shortest augmenting path algorithm are comparable,

which is consistent with the fact that both algorithms perform the same sequence of augmentations (see

Ahuja and Orlin [1991]).

8. Though in the worst-case Dinic's algorithm and the successive shortest path algorithm perform O(nm)

augmentations and take O(n2 m) time, empirically we find that they perform no more than O(n1 6)

augmentations and their running times are bounded by O(n2 ).

9. Dinic's and the successive shortest path algorithms have two representative operations: (i) performing

augmentations whose worst-case complexity is O(n2 m); and (ii) relabeling the nodes whose worst-case

complexity is O(nm). We find that empirically the time to relabel the nodes grows faster than the time for

augmentations. This explains why the capacity scaling algorithms (which decreases the worst-case running
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time of augmentations at the expense of increasing the relabel time) do not improve the empirical running

time over Dinic's algorithm.

2. NOTATION AND DEFINITIONS

We consider the maximum flow problem over a network G = (N, A) with N as the node set and A as

the arc set. Let n = INI and m = IAI. The source s and the sink t are two distinguished nodes of the network.

Let uij denote the capacity of each arc (i, j) E A. We assume that uij is integral and finite. Some of the

algorithms tested by us (namely, the capacity scaling and excess scaling algorithms) require that capacities
are integral while other algorithms don't. Let U = maxtuij: (i, j) E Al. We define the arc adjacency list A(i)

of node i E N as the set of arcs directed out of node i, i.e., A(i) = {(i, k) E A: k E N).

A flow x is a function x : A --> R satisfying

xij - xji = O for all i E N - s, t, (2.1)
{j:(i,j)e A) {j:(j,i)E A}

x xit = v, (2.2)
{i:(i,t) E A}

0 < xij < uij for all (i, j) E A, (2.3)

for some v > 0. The maximum flow problem is to determine a flow for which its value v is maximized.

A preflow x is a function x: A --> R satisfying (2.2), (2.3), and the following relaxation of (2.1):

E x -j:(ij)i 2 for all i E N - , . (2.4)

We say that a preflow x is maximum if its associated value v is maximum. The preflow-push

algorithms considered in this paper maintain a preflow at each intermediate stage. For a given preflow x,

we define for each node i E N - Is, t, its excess

e(i)= , j- x xji. (2.5)
j:(i,j)e A} j:(j,i)E A}

A node with positive excess is referred to as an active node. We use the convention that the source
and sink nodes are never active. We define the residual capacity rij of any arc (i, j) E A with respect to the

given preflow x as rij = (uij - xij) + xji. Notice that the residual capacity uij has two components: (i) (uij - xij),

the unused capacity of arc (i, j), and (ii) the current flow xji on arc (j, i), which we can cancel to increase the

flow from node i to node j. We refer to the network G(x) consisting of the arcs with positive residual

capacities as the residual network.
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A path is a sequence of distinct nodes (and arcs) i - i 2 - ... -i r satisfying the property that for all 1 < p

< r-l, either (i1 , i2 ) e A or (i2 , i1 ) E A. A directed path is an "oriented" version of the path in the sense that

for any consecutive nodes ik and ik+1 in the walk, (ik, ik+1 ) E A. An augmenting path is a directed path in

which each arc has a positive residual capacity.

A cut is a partition of the node set N into two parts, S and S = N-S. Each cut [S, S] defines a set of

arcs consisting of those arcs that have one endpoint in S and another in S. An s-t cut [S, S] is a cut satisfying

the property that s E S and t E S Any (i, j) in [S, S] is a forward arc if i E S and j E S and is a backward arc if

i S and j E S.

3. LITERATURE SURVEY

In this section, we present a brief survey of the theoretical and empirical developments of the

maximum flow problem.

Theoretical Developments

The maximum flow problem was first studied by Ford and Fulkerson [1956], who developed the well-

known labeling algorithm, which proceeds by sending flows along augmenting paths. The labeling

algorithm runs in pseudo-polynomial time. Edmonds and Karp [19721 suggested two polynomial-time

specializations of the labeling algorithm: the first algorithm augments flow along shortest augmenting

paths and runs in O(nm2 ) time; the second algorithm augments flow along paths with maximum residual

capacity and runs in O(m 2 logU) time. Independently, Dinic [19701 introduced the concept of shortest path

networks, called layered networks, and showed that by constructing blocking flows in layered networks, a
maximum flow can be obtained in O(n2 m) time.

Researchers have made several subsequent improvements in maximum flow algorithms by

developing more efficient algorithms to establish blocking flows in layered networks. Karzanov [1974]

introduced the concept of preflows and showed that an implementation that maintains preflows and pushes

flows from nodes with excesses obtains a maximum flow in O(n3 ) time. Subsequently, Malhotra, Kumar and

Maheshwari [1978] presented a conceptually simpler O(n 3 ) time algorithm. Cherkassky [1977] and Galil

[1980] presented further improvements of Karzanov's algorithm that respectively run in O(n 2 m1 /2 ) and

o(n5 /3 m 2 / 3 ) time.

The search for more efficient maximum flow algorithms led to the development of new data

structures for implementing Dinic's algorithm. The first such data structure was suggested by Shiloach

[1978], and Galil and Naamad [1980], and the resulting implementations ran in O(nm log2 n) time. Sleator

and Tarjan [1983] improved this approach by using the dynamic tree data structure, which yielded an O(nm

log n) time algorithm. All of these data structures are quite sophisticated and require substantial

overheads, which limits their practical utility. Pursuing a different approach, Gabow [1985] incorporated

scaling technique into Dinic's algorithm and developed an O(nm log U) algorithm.
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A set of new maximum flow algorithms emerged with the development of distance labels by

Goldberg and Tarjan [1986] in the context of preflow-push algorithms. Distance labels were easier to
manipulate than layered networks and led to more efficient algorithms both theoretically and empirically.

Goldberg and Tarjan suggested FIFO and highest label preflow-push algorithms, both of which ran in O(n3 )
time using simple data structures and in O(nm log(n2 /m)) time using the dynamic tree data structures.

Cheriyan and Maheshwari [1989] subsequently showed that the highest-label preflow-push algorithm

actually runs in O(n2 ,\m) time. Incorporating excess-scaling into the preflow-push algorithms, Ahuja and

Orlin [1989] obtained an O(nm + n2 log U) algorithm. Subsequently, Ahuja, Orlin and Tarjan [1989] developed

two improved versions of the excess-scaling algorithms namely, (i) the stack-scaling algorithm with a time

bound of O(nm + (n2 log U)/(log log U)), and (ii) the wave-scaling algorithm with a time bound of O(nm +
(n2log u)1 / 2 ). Cheriyan and Hagerup [1989], and Alon [1990] gave further improvements of these scaling

algorithms. Goldfarb and Hao [1990 and 1991] describe polynomial time primal simplex algorithms that

solves the maximum flow problem in O(n2m) time, and Goldberg, Grigoriadis, and Tarjan [1991] describe an
O(nm log n) implementation of the first of these algorithms using the dynamic trees data structure.

Empirical Developments

We now summarize the results of the previous computational studies conducted by a number of
researchers including Hamacher [1979], Cheung [1980], Glover, Klingman, Mote and Whitman [1983, 1984],

Imai [1983], Goldfarb and Grigoriadis [1988], Derigs and Meier [19891, Anderson and Setubal [1992], Nguyen

and Venkateswaran [1992], and Badics, Bodos and Cepek [1992].

Hamachar [1979] tested Karzanov's algorithm versus the labeling algorithm and found Karzanov's

algorithm to be substantially superior to the labeling algorithm. Cheung [1980] conducted an extensive

study of maximum flow algorithms including Dinic's, Karzanov's and several versions of the labeling
algorithm including the maximum capacity augmentation algorithm. This study found Dinic's and

Karzanov's algorithms to be the best algorithms, and the maximum capacity augmentation algorithm

slower than both the depth-first and breadth-first labeling algorithms.

Imai [1983] performed another extensive study of the maximum flow algorithms and his results were

consistent with those of Cheung [1980]. However, he found Karzanov's algorithm to be superior to Dinic's

algorithm for most problem classes. Glover, Klingman, Mote and Whitman [1983, 1984] and Goldfarb and

Grigoriadis [1988] have tested network simplex algorithms for the maximum flow problem.

Researchers have also tested implementations of Dinic's algorithm using sophisticated data

structures. Imai [1983] tested Galil and Naamad's [1980] data structure, and Sleator and Tarjan [1983] tested
their dynamic tree data structure. Both the studies observed that these data structures slowed down the
original Dinic's algorithm by a constant factor. Until 1985, Dinic's and Karzanov's algorithms were widely

considered to be the fastest algorithms for solving the maximum flow problem. For sparse graphs,
Karzanov's algorithm was comparable to Dinic's algorithm, but for dense graphs, Karzanov's algorithm

was faster than Dinic's algorithm.
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We now discuss computational studies that tested more recently developed maximum flow

algorithms. Derigs and Meier [1989] implemented several versions of Goldberg and Tarjan's algorithm.

They found that Goldberg and Tarjan's algorithm (using stack or dequeue to select nodes for pushing flows) is

substantially faster than Dinic's and Karzanov's algorithms. In a similar study, Anderson and Setubal

[1992] find different versions (FIFO, highest label, stack, and highest label) to be best for different classes

of networks and queue implementations to be about 4 times faster than Dinic's algorithm.

Nguyen and Venkateswaran [1992] report computational investigations with 10 variants of the

preflow-push maximum flow algorithm. They find that FIFO and highest-label implementations together

with periodic global updates have the best overall performance. Badics, Boros and Cepek [1992] compared

Cheriyan and Hagerup's [1989] PLED (Prudent Linking and Excess Diminishing) algorithm and Goldberg-

Tarjan's algorithm with and without dynamic trees. They found that Goldberg-Tarjan's algorithm

outperformed PLED algorithm. Further, Goldberg-Tarjan's algorithm without dynamic trees was generally

superior to the algorithm with dynamic trees; but they also identify a class of networks where the dynamic

tree data structure does improve the algorithm performance.

In contrast to these studies, we find that our implementation of the highest-label preflow-push is

consistently superior to all other implementations of the preflow-push algorithm on the five problem

classes considered in our study. We find the highest-label preflow-push algorithm to be about 7 to 20 times

faster than Dinic's algorithm and about 6 to 8 times faster than Karzanov's algorithm for large problem

sizes. Our study also provides insights into these and several other algorithms not found in other

computational studies.

4. NETWORK GENERATORS

The performance of an algorithm depends upon the topology of the networks it is tested on. An

algorithm can perform very well on some networks and poorly on others. To meet our primary objective, we

need to choose networks such that an algorithm's performance on it can give sufficient insight into its

general behavior. In the maximum flow literature, no particular type of network has been favored for

empirical analysis. Different researchers have used different type of network generators to conduct

empirical analysis. We performed preliminary testing on four types of networks: (i) purely random

networks (where arcs are added by randomly generating tail and head nodes; the source and sink nodes are

also randomly selected); (ii) NETGEN networks (which are generated by using the well-known network

generator NETGEN developed by Klingman et al. [1974]); (iii) random layered networks (where nodes are

partitioned into layers of nodes and arcs are added from one layer to the next layer using a random process);

and (iv) random grid networks (where nodes are arranged in a grid and each node is connected to its neighbor

in the same and the next grid).

Our preliminary testing revealed that purely random networks and NETGEN networks were rather

easy classes of networks for maximum flow algorithms. NETGEN networks were easy even when we

generated multi-source and multi-sink maximum flow problems. For our computational testing, we wanted

relatively harder problems to better assess the relative merits and demerits of the algorithms. Random
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layered and random grid networks appear to meet our criteria and were used in our extensive testing. We
give in Figure 4.2(a) an illustration of the random layered network, and in Figure 4.2(b) an illustration of
the random grid network, both with width (W) = 3 and length (L) = 4. The topological structure of these
networks is revealed in those figures. For a specific value of W and L, the networks have (WL + 2) nodes. A
random grid network is from the parameters W and L; however, a random layered network has an

additional parameter d, denoting the average outdegree of a node. To generate arcs emanating from a node
in layer I in a random layered network, we first determine its outdegree by selecting a random integer, say w,
from the uniform distribution in the range [1, 2d -1], and then generate w arcs emanating from node i whose
head nodes are randomly selected from nodes in the layer (I + 1). For both the network types, we set the
capacities of the source and sink arcs (i.e., arcs incident to the source and sink nodes) to a large number
(which essentially amounts to creating w source nodes and w sink nodes). The capacities of other arcs are
randomly selected from a uniform distribution in the range [500, 10000] if arcs have their endpoints in
different layers, and in the range [200, 1000] if arcs have their endpoints in the same layer.

length .

I

'N

width

(a)

(b)

Figure 4.2 Example of a random layered network and a random grid network
for width = 3 and length = 4.

k

I
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In our experiments, we considered networks with different sizes. Two parameters determined the

size of the networks: n (number of nodes), and d (average outdegree). For the same number of nodes, we tested

different combinations of W (width) and L (length). We observed that various values of the ratio L/W

gave similar results unless the network was sufficiently long (L >> W) or sufficiently wide (W >> L). We

selected L/W = 2, and observed that the corresponding results were a good representative for a broader range

of L/W. The values of n, we considered, varied from 500 to 10,000. Table 4.3 gives the specific values of n

and the resulting combinations of W and L. For each n, we considered four densities d = 4, 6, 8 and 10 (for

layered networks only). For each combination of n and d, we solved 20 different problems by changing the

random number seeds.

Width (W) 16 22 32 39 45 50 55 59 64 67 71
Length(L) |31 45 63 77 89 100 109 119 125 134 141
n (approx.) 500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Table 4.3 Network Dimensions.

We performed an in-depth empirical analysis of the maximum flow algorithms on random layered

and grid networks. But we also wanted to check whether our findings are valid for other classes of networks

too. We tested our algorithms on three additional network generators: GL(Genrmf-Long), GW(Genrmf-

Wide), and WLM(Washington-Line-Moderate). These networks were part of the DIMACS challenge

workshop held in 1991 at Rutgers University. The details of these networks can be found in Badics, Boros

and Cepek [19921.

5. REPRESENTATIVE OPERATION COUNTS

Most iterative algorithms for solving optimization problems repetitively perform some basic steps.

We can decompose these basic steps into fundamental operations so that the algorithm executes each of

these operations in 0(1) time. An algorithm typically performs a large number of fundamental operations.

We refer to a subset of fundamental operations as a set of representative operations if for every possible

problem instance, the sum of representative operations provides an upper bound (to within a multiplicative

constant) on the sum of all fundamental operations performed by the algorithm. Ahuja and Orlin [1995]

present a comprehensive discussion on representative operations and show that these representative

operation counts can provide valuable information about an algorithm's behavior. We now present a brief

introduction of representative operations counts. We will describe later in Section 8 the use of

representative operations counts in the empirical analysis of algorithms.

Let an algorithm perform K fundamental operations denoted by a1 , a2 , ..., aK, each requiring 0(1)

time to execute once. For a given instance I of the problem, let Cck(I), for k = 1 to K, denote the number of times
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that the algorithm performs the k-th fundamental operation, and CPU(I) denote the CPU time taken by the

algorithm. Let S denote a subset of {1, 2, ..., K). We call S a representative set of operations if CPU(I) =

0(k S ak(I)), for every instance I, and we call each c(k in this summation a representative operation count.

In other words, the sum of the representative operation counts can estimate the empirical running time of an
algorithm to within a constant factor, i.e., there exist constants c1 and c2 such that c1 ke Sak(I) < CPU(I) <

c2 Xke Sak (I ) To identify a representative set of operations of an algorithm, we essentially need to identify

a set S of operations so that each of these operations takes 0(1) time and each execution of every operation

not in S can be "charged" to an execution of some operation in S.

6. DESCRIPTION OF AUGMENTING PATH ALGORITHMS

In this section, we describe the following augmenting path algorithms: the shortest augmenting

path algorithm, Dinic's algorithm, and the capacity scaling algorithm. In Section 9, we will present the

computational testings of these algorithms. In our presentation, we first present a brief description of the

algorithm and identify the representative operation counts. We have tried to keep our algorithm

description as brief as possible; further details about the algorithms can be found in the cited references, or

in Ahuja, Magnanti and Orlin [1993]. We also outline the heuristics we incorporated to speed-up the

algorithm performance. In general, we preferred implementing the algorithms in their "purest" forms, and

so we incorporated heuristics only when they improved the performance of an algorithm substantially.

Shortest Augmenting Path Algorithm

Augmenting path algorithms incrementally augment flow along paths from the source node to the

sink node in the residual network. The shortest augmenting path algorithm always augments flow along a

shortest path, i.e., one that contains the fewest number of arcs. A shortest augmenting path in the residual

network can be determined by performing a breadth-first search of the network, requiring O(m) time.

Edmonds and Karp [1972] showed that the shortest augmenting path algorithm would perform O(nm)

augmentations. Consequently, the shortest augmenting path algorithm can be easily implemented in O(nm 2 )

time. However, a shortest augmenting path can be discovered in an average of O(n) time. One method to

achieve the average time of O(n) per path is to maintain "distance labels" and use these labels to identify a

shortest path. A set of node label d(-) defined with respect to a given flow x are called distance labels if

they satisfy the following conditions:

d(t) = 0, ( 6.1a)

d(i) < d(j) + 1 for every arc (i, j) in G(x). (6.lb)

We call an arc (i, j) in the residual network admissible if it satisfies d(i) = d(j) + 1, and inadmissible

otherwise. We call a directed path P admissible if each arc in the path is admissible. The shortest
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augmenting path algorithm proceeds by augmenting flows along admissible paths from the source node to

the sink node. It obtains an admissible path by successively building it up from scratch. The algorithm

maintains a partial admissible path (i.e., an admissible path from node s to some node i), and iteratively

performs advance or retreat steps at the last node of the partial admissible path (called the tip). If the tip

of the path, node i, has an admissible arc (i, j), then we perform an advance step and add arc (i, j) to the

partial admissible path; otherwise we perform a retreat step and backtrack by one arc. We repeat these

steps until the partial admissible path reaches the sink node, at which time we perform an augmentation.

We repeat this process until the flow is maximum.

To begin with, the algorithm performs a backward breadth-first search of the residual network

(starting with the sink node) to compute the "exact" distance labels. (The distance label d(i) is called exact

if d(i) is the fewest number of arcs in the residual network from i to t. Equivalently, d(i) is exact if there is

an admissible path from i to t. ) The algorithm starts with the partial admissible path P: = and tip i: = s,

and repeatedly executes one of the following three steps:

advance(i). If there exists an admissible arc (i, j), then set pred(j): = i and P := Pu(i, j)). If j = t, then go to

augment; else replace i by j and repeat advance(i).

retreat(i). Update d(i): = min{d(j) + 1: rij > 0 and (i, j) E A(i)}. (This operation is called a relabel

operation.) If d(s) > n, then stop. If i = s, then go to advance(i); else delete (pred(i), i) from P, replace i by

pred(i) and go to advance(i).

augment. Let A: = mintrij: (i, j) E P. Augment A units of flow along P. Set P : = , i := s, and go to advance(i).

The shortest augmenting path algorithm uses the following data structure to identify admissible

arcs emanating from a node in the advance steps. Recall that for each node i, we maintain the arc adjacency

list which contains the arcs emanating from node i. We can arrange arcs in these lists arbitrarily, but the

order, once decided, remains unchanged throughout the algorithm. We further maintain with each node i

an index, called current-arc, which is an arc in A(i) and is the next candidate for admissibility testing.

Initially, the current-arc of node i is the first arc in A(i). Whenever the algorithm attempts to find an

admissible arc emanating from node i, it tests whether the node's current arc is admissible. If not, it

designates the next arc in the arc list as the current-arc. The algorithm repeats this process until it finds an

admissible arc or reaches the end of the arc list. In the latter case, the algorithm relabels node i and sets its

current-arc to the first arc in A(i).

We can show the following results about the shortest augmenting path algorithm: (i) the algorithm

relabels any node at most n times; consequently, the total number of relabels is O(n2 ); (ii) the algorithm

performs at most nm augmentations; and (iii) the running time of the algorithm is O(n2m).
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The shortest augmenting path algorithm, as described, terminates when d(s) n. Empirical

investigations revealed that this is not a satisfactory termination criterion because the algorithm spends

too much time relabeling the nodes after the algorithm has already established a maximum flow. This

happens because the algorithm does not know that it has found a maximum flow. We next suggest a

technique that is capable of detecting the presence of a minimum cut and a maximum flow much before the

label of node s satisfies d(s) > n. This technique was independently developed by Ahuja and Orlin [1991],

and Derigs and Meier [1989].

To implement this technique, we maintain an n-dimensional array called number, whose indices

vary from 0 to (n-l). The value number(k) stores the number of nodes whose distance label equals k.

Initially, when the algorithm computes exact distance labels using breadth-first search, the positive

entries in the array number are consecutive. Subsequently, whenever the algorithm increases the distance
label of a node from k1 to k2 , it subtracts 1 from number(k1 ), adds 1 to number(k 2), and checks whether

number(k 1 ) = 0. If number(k1 ) = 0, then there is a "gap" in the number array and the algorithm terminates.

To see why this termination criteria works, let S = {ie N: d(i) > k1i and S= i E N: d(i) < k1i. It can be

verified using the distance validity conditions (6.1) that all forward arcs in the s-t cut [S, S] must be

saturated and backward arcs must be empty; consequently, [S, S] must be a minimum cut and the current flow

maximum. We shall see later that this termination criteria typically reduces the running time of the

shortest augmenting path algorithm by a factor between 10 and 30 in our tests.

We now determine the set of representative operations performed by the algorithm. At a

fundamental level, the steps performed by the algorithm can be decomposed into scanning the arcs, each

requiring (1) time. We therefore analyse the number of arcs scanned by various steps of the algorithm.

Retreats. A retreat step at node i scans I A(i) I arcs to relabel node i. If node i is relabeled a(i) times, then

the algorithm scan a total of i EN o(i) I A(i) I arcs during relabels. Thus arc scans during relabels, called arc-

relabels, is the first representative operation. Observe that in the worst-case, each node i is relabeled at

most n times, and the arc scans in the relabel operations could be as many as EiE N n A(i) I = n XiEN

I A(i) I = nm; however, on the average, the arc scans would be much less.

Augmentations. The fundamental operation in augmentation steps is the arcs scanned to update flows. Thus

arc scans during augmentations, called arc-augmentations, is the second representative operation. Notice

that in the worst-case, arcs-augmentations could be as many as n2 m; however, the actual number would be

much less in practice.

Advances. Each advance step traverses (or scans) one arc. Each arc scan in an advance step is one of the two

types: (i) a scan which is later cancelled by a retreat operation; and (ii) a scan on which an augmentation is
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subsequently performed. In the former case, this arc scan can be charged to the retreat step, and in the later

case it can be charged to the augmentation step. Thus, the arc scans during advances can be accounted by the

first and second representative operations, and we do not need to keep track of advances explicitly.

Finding admissible arcs. Finally, we consider the arcs scanned while identifying admissible arcs emanating

from nodes. Consider any node i. Notice that when we have scanned I A(i) I arcs, we reach the end of the arc

list and the node is relabeled, which requires scanning I A(i) I arcs. Thus, arcs scanned while finding

admissible arcs can be charged to arc-relabels, which is the first representative operation.

Thus the preceding analysis concludes that one legitimate set of representative operations for the

shortest augmenting path algorithm is the following: (i) arc-relabels; and (ii) arc-augmentations.

Dinic's Algorithm

Dinic's algorithm proceeds by constructing shortest path networks, called layered networks, and by

establishing blocking flows in these networks. With respect to a given flow x, we construct the layered

network V as follows. We determine the exact distance labels d in G(x). The layered network consists of

those arcs (i, j) in G(x) which satisfy d(i) = d(j)+1. In the layered network, nodes are partitioned into layers
of nodes V0, V1, V2 , ..., Vl , where layer k contains the nodes whose distance labels equal k. Furthermore,

each arc (i, j) in the layered network satisfies i E Vk and j E Vk_1 for some k. Dinic's algorithm augments

flow along those paths P in the layered network for which i E Vk and j E Vk_1 for each arc (i, j) E P. In other

words, Dinic's algorithm does not allow traversing the arcs of the layered network in the opposite direction.

Each augmentation saturates at least one arc in the layered network, and after at most m augmentations the

layered network contains no augmenting path. We call the flow at this stage a blocking flow.

Using a simplified version of the shortest augmenting path algorithm described earlier, the

blocking flow in a layered network can be constructed in O(nm) time (see Tarjan [1983]). When a blocking

flow has been constructed in the network, Dinic's algorithm recomputes the exact distance labels, forms a

new layered network, and constructs a blocking flow in the new layered network. The algorithm repeats

this process until obtaining a layered network for which the source is not connected to the sink, indicating

the presence of a maximum flow. It is possible to show that every time Dinic's algorithm forms a new

layered network, the distance label of the source node strictly increases. Consequently, Dinic's algorithm

forms at most n layered networks and runs in O(n2m) time.

We point out that Dinic's algorithm is very similar to the shortest augmenting path algorithm.

Indeed the shortest augmenting path algorithm can be viewed as Dinic's algorithm where in place of the

layered network, distance labels are used to identify shortest augmenting paths. Ahuja and Orlin [1991]

show that both the algorithms are equivalent in the sense that on the same problem they will perform the
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same sequence of augmentations. Consequently, the operations performed by Dinic's algorithm are the same

as those performed by the shortest augmenting path algorithm except that the arcs scanned during relabels

will be replaced by the arc scanned while constructing layered networks. Hence, Dinic's algorithm has the

following two representative operations: (i) arcs scanned while constructing layered networks; and (ii) arc-

augmentations.

Capacity Scaling Algorithm

We now describe the capacity scaling algorithm for the maximum flow problem. This algorithm

was originally suggested by Gabow [1985]. Ahuja and Orlin [19911 subsequently developed a variant of this

approach which is better empirically. We therefore tested this variant in our computational study.

The essential idea behind the capacity scaling algorithm is to augment flow along a path with

sufficiently large residual capacity so that the number of augmentations is sufficiently small. The capacity

scaling algorithm uses a parameter A and with respect to a given flow x, defines the A-residual network as a

subgraph of the residual network where the residual capacity of every arc is at least A. We denote the A-

residual network by G(x, A). The capacity scaling algorithm works as follows:

algorithm capacity-scaling;
begin

A: = 2 Llog ul; x2 : = 0;
while A > 1 do
begin

starting with the flow x = x2A, use the shortest augmenting path algorithm to construct
augmentations of capacity A or greater until obtaining a flow xA such that there is no
augmenting path of size A in G(x, A);

set x := xA;
reset A: = A/2;

end;
end;

We call a phase of the capacity scaling algorithm during which A remains constant as the A-scaling

phase. In the A-scaling phase, each augmentation carries at least A units of flow. The algorithm starts

with A = 2Ll°g UJ and halves its value in every scaling phase until A = 1. Hence the algorithm performs 1 +

Llog UJ = O(log U) scaling phases. Further, in the last scaling phase, A = 1 and hence G(x, A) = G(x). This

establishes that the algorithm terminates with a maximum flow.

The efficiency of the capacity scaling algorithm depends upon the fact that it performs at most 2m

augmentations per scaling phase (see Ahuja and Orlin [19911). Recall our earlier discussion that the shortest

augmenting path algorithm takes O(n2 m) time to perform augmentations (because it performs O(m)

augmentations) and O(nm) time to perform the remaining operations. When we employ the shortest
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augmenting path algorithm for reoptimization in a scaling phase, it performs only O(m) augmentations and,

consequently, runs in O(nm) time. As there are O(log U) scaling phases, the overall running time of the

capacity scaling algorithm is O(nm log U).

The capacity scaling algorithm has the following three representative operations:

Relabels. The first representative operation is arcs scanned while relabeling the nodes. In each scaling

phase, the algorithm scans O(nm) arcs. Overall, the arc scanning could be as much as O(nm log U), but

empirically it is much less.

Augmentations. The second representative operation is the arcs scanned during flow augmentations. As

observed earlier, the worst-case bound on the arcs scanned during flow augmentations is O(nm log U).

Constructing A-residual networks. The algorithm constructs A-residual networks 1 + Llog UJ times and each

such construction requires scanning O(m) arcs. Hence, constructing A-residual network requires scanning a

total of O(m log U) arcs, which is the third representative operation.

It may be noted that compared to the shortest augmenting path algorithm, the capacity scaling

algorithm reduces the arc-augmentations from O(n2 m) to O(nm log U). Though this improves the overall

worst-case performance of the algorithm, it actually worsens the empirical performance, as discussed in

Section 9.

7. DESCRIPTION OF PREFLOW-PUSH ALGORITHMS

In this section, we describe the following preflow-push algorithms: FIFO, highest-label, lowest-

label, excess-scaling, stack-scaling, wave-scaling, and Karzanov's algorithm. Section 10 presents the results

of the computational testing of these algorithms.

The preflow-push algorithms maintain a preflow, defined in Section 2, and proceed by examining

active nodes, i.e., nodes with positive excess. The basic repetitive step in the algorithm is to select an

active node and to attempt to send its excess closer to the sink. As sending flow on admissible arcs pushes the

flow closer to the sink, the algorithm always pushes flow on admissible arcs. If the active node being

examined has no admissible arc, then we increase its distance label to create at least one admissible arc.

The algorithm terminates when there are no active nodes. The algorithmic description of the preflow-push

algorithm is as follows:
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algorithm preflow-push;
begin

set x: = 0 and compute exact distance labels in G(x);
send xsj: = Us flow on each arc (s, j) E A and set d(s): = n;
while the network contains an active node do
begin

select an active node i;
push/relabel(i)

end;
end;

procedure pushlrelabel(i);
begin

if the network contains an admissible arc (i, j) then
push 8: = min e(i), rij) units of flow from node i to node j

else replace d(i) by minfd(j) + 1: (i, j) E A(i) and rij > 0};

end;

We say that a push of 8 units on an arc (i, j) is saturating if 8 = rij, and nonsaturating if 6 < rij. A

nonsaturating push reduces the excess at node i to zero. We refer to the process of increasing the distance

label of a node as a relabel operation. Goldberg and Tarjan [1986] established the following results for the

preflow-push algorithm.

(i) Each node is relabeled at most 2n times and the total relabel time is O(nm).

(ii) The algorithm performs O(nm) saturating pushes.

(c) The algorithm performs O(n2m) nonsaturating pushes.

In each iteration, the preflow-push algorithm either performs a push, or relabels a node. The

preflow-push algorithm identifies admissible arcs using the current-arc data structure also used in the

shortest augmenting path algorithm. We observed in Section 6 that the effort spent in identifying

admissible arcs can be charged to the arc-relabels. Therefore, the algorithm has the following two

representative operations: (i) arc-relabels, and (ii) pushes. The first operation has a worst-case time bound

of O(nm) and the second operation has a worst-case time bound of O(n2m).

It may be noted that the representative operations of the generic preflow-push algorithm have a

close resemblance with those of the shortest augmenting path algorithm and, hence, with those of Dinic's

and capacity scaling algorithms. They both have arc-relabels as their first representative operation.

Whereas the shortest augmenting path algorithm has arc-augmentation as its second representative

operation, the preflow-push algorithm has pushes on arcs as its second representative operation. We note

that sending flow on an augmenting path P may be viewed as a sequence of pushes along the arcs of P.
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We next describe some implementation details of the preflow-push algorithms. All preflow-push

algorithms tested by us incorporate these implementation details. In an iteration, the preflow-push

algorithm selects a node, say i, and performs a saturating push, or a nonsaturating push, or relabels a node.

If the algorithm performs a saturating push, then node i may still be active, but in the next iteration the

algorithm may select another active node for push/relabel step. However, it is easy to incorporate the rule

that whenever the algorithm selects an active node, it keeps pushing flow from that node until either its

excess becomes zero or it is relabeled. Consequently, there may be several saturating pushes followed by

either a nonsaturating push or a relabel operation. We associate this sequence of operation with a node

examination. We shall henceforth assume that the preflow-push algorithms follow this rule.

The generic preflow-push algorithm terminates when all the excess is pushed to the sink or returns

back to the source node. This termination criteria is not attractive in practice because this results in too

many relabels and too many pushes, a major portion of which is done after the algorithm has already

established a maximum flow. To speed up the algorithm, we need a method to identify the active nodes

that become disconnected from the sink (i.e., have no augmenting paths to the sink) and avoid examining

them. One method that has been implemented by several researchers is to occasionally perform a breadth-

first search to recompute exact distance labels. This method also identifies nodes that become disconnected

from the sink node. In our preliminary testing, we tried this method and several other methods. We found

the following variant on the "number array" method to be the most efficient in practice.

Let the set DLIST(k) consist of all nodes with distance label equal to k. Let the index first(k) point

to the first node in DLIST(k) if DLIST(k) is nonempty, and first(k) = 0 otherwise. We maintain the set

DLIST(k) for each 1 < k < n in the form of a doubly linked list. We initialize these lists when initial

distance labels are computed by the breadth-first search. Subsequently, we update these lists whenever a

distance update takes place. Whenever the algorithm updates the distance label of a node from k1 to k2, we

update DLIST(k 1 ) and DLIST(k 2 ) and check whether first(k1 ) = 0. If so, then all nodes in the sets

DLIST(k 1 +1), DLIST(k 1 +2), ... have become disconnected from the sink. We scan the sets DLIST(k 1 +1),

DLIST(kl+2), ..., and mark all the nodes in these sets so that they are never examined again. We then

continue with the algorithm until there are no active nodes that are unmarked.

We also found another heuristic speedup to be effective in practice. At every iteration, we keep

track of the number r of marked nodes. Wherever any node i is found to have d(i) > (n-r-1), we mark it too

and increment r by one. It can be readily shown that such a node is disconnected from the sink node.

If we implement preflow-push algorithms with these speedups, then the algorithm terminates

with a maximum preflow. It may not be a flow because some excess may reside at marked nodes. At this

time, we initiate the second phase of the algorithm, in which we convert the maximum preflow into a
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maximum flow by returning the excesses of all nodes back to the source. We perform a (forward) breadth-

first search from the source to compute the initial distance labels d'(-), where the distance label d'(i)

represents a lower bound on the length of the shortest path from node i to node s in the residual network. We

then perform preflow-push operations on active nodes until there are no more active nodes. It can be shown

that regardless of the order in which active nodes are examined, the second phase terminates in O(nm)

time. We experimented with several rules for examining active nodes and found that the rule that always

examines an active node with the highest distance label leads to minimum number of pushes in practice. We

incorporated this rule into our algorithms.

An attractive feature of the generic preflow-push algorithm is its flexibility. By specifying

different rules for selecting active nodes for the push/relabel operations, we can derive many different

algorithms, each with different worst-case and empirical behaviors. We consider the following three

implementations:

Highest-Label Preflow-Push Algorithm.

The highest-label preflow-push algorithm always pushes flow from an active node with the

highest distance label. Let h* = max {d(i): i is active). The algorithm first examines nodes with distance

label h and pushes flow to nodes with distance label h*-1, and these nodes, in turn, push flow to nodes with

distance labels equal to h*-2, and so on, until either the algorithm relabels a node or it has exhausted all

the active nodes. When it has relabeled a node, the algorithm repeats the same process. Goldberg and

Tarjan [1986] obtained a bound of O(n3 ) on the number of nonsaturating pushes performed by the algorithm.

Later, Cheriyan and Maheshwari [1989] showed that this algorithm actually performs O(n2 m1 / 2)

nonsaturating pushes and this bound is tight.

We next discuss how the algorithm selects an active node with the highest distance label without

too much effort. We use the following data structure to accomplish this. We maintain the sets SLIST(k) =

ii: i is active and d(i) = k) for each k = 1, 2, ..., 2n-1, in the form of singly linked stacks. The index next(k),

for each 0 < k < 2n-1, points to the first node in SLIST(k) if SLIST(k) is nonempty, and is 0 otherwise. We

define a variable level representing an upper bound on the highest value of k for which SLIST(k) is

nonempty. In order to determine a node with the highest distance label, we examine the lists SLIST(level),

SLIST(level-1), ..., until we find a nonempty list, say SLIST(p). We select any node in SLIST(p) for

examination, and set level = p. Also, whenever the distance label of a node being examined increases, we

reset level equal to the new distance label of the node. It can be shown that updating SLIST(k) and updating

level is on average 0(1) steps per push and 0(1) steps per relabel. This result and the previous discussion

implies that the highest-label preflow-push algorithm can be implemented in O(n2 Nfm) time.
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FIFO Preflow-Push Algorithm

The FIFO preflow-push algorithm examines active nodes in the first-in-first-out order. The

algorithm maintains the set of active nodes in a queue called QUEUE. It selects a node i from the front of

QUEUE for examination. The algorithm examines node i until it becomes inactive or it is relabeled. In the

latter case, node i is added to the rear of QUEUE. The algorithm terminates when QUEUE becomes empty.

Goldberg and Tarjan [1986] showed that the FIFO implementation performs O(n3 ) nonsaturating pushes and

can be implemented in O(n3 ) time.

Lowest-Label Preflow-Push Algorithm.

The lowest-label preflow-push algorithm always pushes flow from an active node with the

smallest distance label. We implement this algorithm in a manner similar to the highest-label preflow-

push algorithm. This algorithm performs O(n2 m) nonsaturating pushes and runs in O(n2 m) time.

EXCESS-SCALING ALGORITHMS

Excess-scaling algorithms are special implementations of the generic preflow-push algorithms and

incorporate scaling technique which dramatically improves the number of nonsaturating pushes in the

worst-case. The essential idea in the (original) excess-scaling algorithm is to assure that each

nonsaturating push carries "sufficiently large" flow so that the number of nonsaturating pushes is

"sufficiently small". The algorithm defines the term "sufficiently large" and "sufficiently small"
iteratively. Let emax = max(e(i): i active) and A be an upper bound on emax. We refer to a node i with e(i)

> A/2 > emax/2 as a node with large excess, and a node with small excess otherwise. Initially A = 2 l°og UJ,

i.e., the largest power of 2 less than or equal to U.

The (original) excess-scaling algorithm performs a number of scaling phases with different values of

the scale factor A. In the A-scaling phase, the algorithm selects a node i with large excess, and among such

nodes selects a node with the smallest distance label, and performs push/relabel(i) with the slight

modification that during a push on arc (i, j), the algorithm pushes minte(i), rij, A-e(j)} units of flow. (It can

be shown that the above rules ensure that each nonsaturating push carries at least A/2 units of flow and no

excess exceeds A.) When there is no node with large excess, then the algorithm reduces A by a factor 2, and

repeats the above process until A = 1, when the algorithm terminates. To implement this algorithm, we

maintain the singly linked stacks SLIST(k) for each k = 1, 2,..., 2n-1, where SLIST(k) stores the set of large

excess nodes with distance label equal to k. We determine a large excess node with the smallest distance

label by maintaining a variable level and using a scheme similar to that for the highest-label preflow-

push algorithm. Ahuja and Orlin [1989] have shown that the excess-scaling algorithm performs O(n2 log U)

nonsaturating pushes and can be implemented in O(nm + n2 log U) time.
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Similar to other preflow-push algorithms, the excess-scaling algorithm has (i) arc-relabels; and

(ii) pushes, as its two representative operations. The excess-scaling algorithm also constructs the lists

SLIST(k) at the beginning of each scaling phase, which takes 0(n) time, and this time can not be accounted

in the two representative operations. Thus constructing these list, which takes a total of O(n log U) time, is

the third representative operation in the excess-scaling algorithm.

We also included in our computational testing two variants of the excess-scaling algorithm with

improved worst-case complexities, which were developed by Ahuja, Orlin and Tarjan [1989]. These are (i)

the stack-scaling algorithm, and (ii) the wave-scaling algorithm.

Stack-Scaling Algorithm

The stack-scaling algorithm scales excesses by a factor of k > 2 (i.e., reduces the scale factor by a

factor of k from one scaling phase to another), and always pushes flow from a large excess node with the

highest distance label. The complexity argument of the excess-scaling algorithm and its variant rests on

the facts that a nonsaturating push must carry at least A/k units of flow and no excess should exceed A. These

two conditions are easy to satisfy when the push/relabel operation is performed at a large excess node with

the smallest distance label (as in the excess-scaling algorithm), but difficult to satisfy when the

push/relabel operation is performed at a large excess node with the largest distance label (as in the stack-

scaling algorithm). To overcome this difficulty, the stack-scaling algorithm performs a sequence of push

and relabels using a stack S. Suppose we want to examine a large excess node i until either node i becomes a

small excess node or node i is relabeled. Then we set S = i) and repeat the following steps until S is empty.

stack-push. Let v be the top node on S. Identify an admissible arc out of v. If there is no admissible arc, then

relabel node v and pop (or, delete) v from S. Otherwise, let (v, w) be an admissible arc. There are two cases.

Case 1. e(w) > A/2 and w X t. Push w onto S.

Case 2. e(w) <A/2 or w = t. Push min(e(v), rij, A-e(w)) units of flow on arc (v, w). If e(v) < A/2, then pop node

v from S.

It can be shown that if we choose k = Flog U/log log U1, then the stack-scaling algorithm performs

O(n2 log U/loglogU) nonsaturating pushes and runs in O(nm + n2 logU/log logU) time. The representative

operations of this algorithm are the same as those for the excess-scaling algorithm.

Wave-Scaling algorithm

The wave-scaling algorithm scales excesses by a factor of 2 and uses a parameter L whose value is

chosen appropriately. This algorithm differs from the excess-scaling algorithm as follows. At the
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beginning of every scaling phase, the algorithm checks whether EiE N e(i) > nA/L (i.e., when the total

excess residing at the nodes is sufficiently large). If yes, then the algorithm performs passes on active nodes.

In each pass, the algorithm examines all active nodes in nondecreasing order of their distance labels and

performs pushes at each such node until either its excess reduces to zero or the node is relabeled. We perform

pushes at active nodes using the stack-push method described earlier. We terminate these passes when we
find that ie N e(i) < nA/L. At this point, we apply the original excess-scaling algorithm, i.e., we push flow

from a large excess node with the smallest distance label. If we choose L = rlog U, then the algorithm can

be shown to perform O(n2iog U) nonsaturating pushes and to run in O(nm + n2 iogU) time.

KARZANOV'S ALGORITHM

Karzanov's algorithm is also a preflow-push algorithm, but pushes flow from the source to the sink

using layered networks instead of distance labels. Karzanov [1974] describes a preflow-based algorithm to

construct a blocking flow in a layered network in O(n2 ) time. The algorithm repeatedly performs two

operations: push and balance. The push operation pushes the flow from an active node from one layer to

nodes in the next layer (closer to the sink) in the layered network and the balance operation returns the flow

that can't be sent to the next layer to the nodes in the previous layer it came from. Karzanov's algorithm

repeatedly performs forward and reverse passes on active nodes. In a forward pass, the algorithm examines

active nodes in the decreasing order of the layers they belong to and performs push operations. In a

backward pass, the algorithm examines active nodes in the increasing order of the layer they belong to and

performs balance operations. The algorithm terminates when there are no active nodes. Karzanov shows

that this algorithm constructs a blocking flow in a layered network in O(n2) time; hence the overall running

time of the algorithm is O(n3 ).

The representative operations in Karzanov's algorithm are (i) the arc scans required to construct

layered networks (which are generally m times the number of layered networks), and (ii) the push

operations. The balance operations can be charged to the first representative operation. In the worst-case,

the first representative operation takes O(nm) time and the second representative operation takes O(n3)

time.

A Remark on the Similar Representative Operations for Maximum Flow Algorithms

The preceding description of the maximum flow algorithms and their analysis using representative

operations yields the interesting conclusion that for each of the non-scaling maximum flow algorithms there

is a set of two representative operations: (i) arc-relabels; and (ii) either of arc-augmentations and arc-

pushes. Whereas the augmenting path algorithms perform the arc-augmentation, the preflow-push

algorithms perform arc-pushes. The scaling based methods need to include one more representative

operation corresponding to the operations performed at the beginning of a scaling phase. The similarity and



25

commonality of the representative operations reflects underlying common structure of these various

maximum flow algorithms.

8. OVERVIEW OF COMPUTATIONAL TESTING

We shall now present details of our computational testing. We partition our presentation into two

parts. We first present results for the augmenting path algorithms and then for the preflow-push

algorithms. Among the augmenting path algorithms, we present a detailed study of the shortest

augmenting path algorithm because it is the fastest augmenting path algorithm. Likewise, among the

preflow-push algorithms, we present a detailed study of the highest-label preflow-push algorithm, which

is the fastest among the algorithms tested by us.

Table 8.1gives the storage requirements of the algorithms tested by us. All requirements are linear

in n and m, and the largest requirment is within a facotr of 2 of the smallest requirement, assuming that m >

n.

Algorithm qStorage
Requirement

Shortest augmenting path algorithm
Capacity scaling algorithm
Dinic's algorithm
Karzanov's algorithm
Highest-label preflow-push algorithm
FIFO preflow-push algorithm
Lowest-label preflow-push algorithm
Excess-scaling algorithm
Stack-scaling algorithm
Wave-scaling algorithm

7n + 6m
7n + 6m
5n + 6m
6n + 8m
10n + 6m
8n + 6m
10n + 6m
10n + 6m
13n + 6m
13n + 6m

Table 8.1 Storage requirements of various maximum flow algorithms.

All of our algorithms were coded in Fortran and efforts were made to run all the programs under

similar conditions of load on the computer resources. We performed the computational tests in two phases.

In the first phase, we tested our algorithms on the random layered and random grid networks on the Convex

mini super computer under the Convex OS 10.0.5 using the Convex Fortran Compiler V 7.0.1 in a time-sharing

environment. Each algorithm was tested on these two network generators and for different problem sizes.

For each problem size, we solved 20 different problems by changing the seed to the random number generator,

and compute the averages of these 20 sets of data. We analyse algorithms using these averages. The CPU

times taken by the programs were noted using a standard available time function having a resolution of 1

microsecond. The times reported do not include the input or output times; however, they do include the time

taken to initialize the variables. Most of our conclusions are based on these tests. In the second phase, we

tested the algorithms on DIMACS benchmark instances on DECSYSTEM-5000, which validated our findings
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for the layered and grid networks. In Sections 9 and 10, we present our results for the first phase of testing,

and in Section 11 the results of the second phase of testing.

For each algorithm we tested, we considered the following questions: (i) What are the asymptotic

bottleneck operations in the algorithm? (ii) What is the asymptotic growth in the running time as the

problem size grows larger? (iii) What proportion of time is spent on the bottleneck operations as the

problem size grows? (iv) How does each algorithm compare to the best alternative algorithm? (v) How

sensitive are the results to the network generator?

We used the representative operation counts (discussed in Section 5) to answer the above questions

and provide a mixture of statistics and visual aids. The representative operation counts allow us to perform

the following tasks:

(a) Identifying Asymptotic Bottleneck Operations. A representative operation is an asymptotic bottleneck

operation if its share in the computational time becomes larger and larger as the problem size increases.
Suppose an algorithm has two representative operations A and B. Let aS(I) = eaA(I) + aB (I). For the

identification of the asymptotic bottleneck operations, we plotted aA(I)/oaS(I) and ccB(I)/aS(I) for

increasingly large problem instances. In most cases, we identified an operation that accounts for an

increasing larger share of the running time as problem sizes grew larger, and we extrapolated that this

operation is the asymptotic bottleneck operation.

(b) Comparing Two Algorithms. Let asl(k) and as 2(k) be the total number of representative operations

performed by two algorithms AL1 and AL2, respectively, on instances of size k. We say that AL 1 is superior

to the algorithm AL2 if limkoo.aSl (k)/as2 (k)} -* 0. We estimate this limit by extrapolating from trends in

the plots of as (k)/a 2 (k).

(c) Virtual Running Time. Suppose that an algorithm has two representative operations A and B. Then we
estimate the running time of the algorithm on instance I by fitting a linear regression to CPU(I) of the form cA

aA(I)+ cB crB(I), To obtain an idea of the goodness of this fit, we plot the ratio V(I)/CPU(I) for all the data

points. (This is an alternative to plotting the residuals.) For all the maximum flow algorithms, these

virtual running time estimates were excellent approximations, typically within 5% of the true running time.

The virtual time analysis also allows us to estimate the proportion of the time spent in various

representative operations. For example, if the virtual running time of a preflow-push algorithm is
estimated to be c1 (number of pushes) + c2 (number of arc-relabels), then one can estimate the time spent in

pushing as c1 (number of pushes)/(virtual CPU time).

(d) Estimating the Growth Rate of Bottleneck Operations. We estimated the growth rate of each

bottleneck (representative) operation in terms of the input size parameters. We prefer this approach to

estimating only CPU time directly because the CPU time is the weighted sum of several operations and

hence usually has a more complex growth rate. We estimate the growth rateas a polynomial cx no dY for a

network flow problem, where d = m/n. After taking logs of the computation counts, the growth rate is
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estimated to be linear in log n and log d. We determine the coefficients o, f3 and y using linear regression
analysis. We plotted the predicted operation counts (based on the regression) divided by the actual

operation counts. This curve is an alternative to plotting the residuals.

We observed that the computational results are sensitive to the network generator. In principle, one
can run tests on a wide range of generators to investigate the robustness of the algorithms, but this may be at
the expense of unduly increasing the scope of the study. To investigate the robustness of our conclusions, we

performed some additional tests of our algorithms on the DIMACS benchmark instances. Most of our
conclusions based on tests on our initial network generators extend to those classes of networks too.

9. COMPUTATIONAL RESULTS OF AUGMENTING PATH ALGORITHMS

In this section, we present computational results of the augmenting path algorithms discussed in

Section 6. We first present results for the shortest augmenting path algorithm.

Shortest Augmenting Path Algorithm

In Figure 9.1, we show the CPU times taken by the shortest augmenting path algorithm for the two
network generators and for different problem sizes. The figure contains five plots. Of these, four plots are

for the problems generated by the random layered networks (or, simply, the layered networks) for densities
d = 4, d = 6, d = 8 and d = 10, and the fifth plot is for the problems generated by the random grid networks (or,
simply, the grid networks). The plot with squares on it is for the grid networks. For each problem size, we
solved 20 different problems and used the averaged data for drawing these figures.

100

90

80

70

60

E 50

40

30

20

10

0

d =10

d=8

d=6

d =4

500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n _

Figure 9.1. CPU Time for the shortest augmenting path algorithm.
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As we observed earlier, the representative operations in the shortest augmenting path algorithm
are (i) r, arc scans for relabels or, simply arc-relabels, and (ii) a a , arc scans for augmentations, or, simply,

arc-augmentations. To identify which one of these two operations is the asymptotic bottleneck operation,
we plot the ratio ar/(ar + aa ) in Figure 9.2 as a function of n. Although for all of our tests on layered

networks (xr < oaa, it appears that the plot of the ratios ar/(cr + aa) have a slightly upward trend. The

plots suggest that arc-relabels increase at a rate slightly higher than the arc-augmentations. In other

words, empirically, the relabel time grows at a faster pace than the augmentation time. This observation

contrasts with what is indicated by the worst-case analysis. The worst-case bound for the augmentation

time (which is O(n2 m)) grows much faster than the worst-case bound for the relabel time (which is O(nm)).

We also observe from these figures that as the network density increases for layered networks, the share of

the relabel time in the overall time slightly decreases. We conjecture that this behavior is exhibited by

the shortest augmenting path algorithm because increasing the network density causes the number of

augmentations to increase at a pace faster than the number of relabels, and thus the augmentations will

constitute a larger proportion of the representative operation counts.

Figure 9.2 throws plots the relative proportion of the representative operation counts within the

total counts, but does not directly indicate what proportion of the CPU time is spent on these two operations.

To do so, we compute the virtual running time, which is an estimate of the CPU time as a linear function of

the representative operation counts, obtained using regression. We obtain the following expresion of the

virtual running time (with a R2 value equal to 0.9998).

V(I) = 6.7x10- 6 ar(I) + 7.6x10-6 ca(I)
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Figure 9.2. Growth rate of arc-relabels/(arc-relabels + arc-augmentations)
for the shortest augmenting path algorithm.
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To visualize how accurately the virtual time estimates the CPU time, we plot the ratio of

V(I)/CPU(I) in Figure 9.3. We find that for all the problem instances, this ratio is between 0.95 and 1.05. To

determine the time spent on the two representative operations, we plot the ratio (6.7x10-6 cXr(I))/V(I) in

Figure 9.4. We find that for the layered networksthat we tested, the relabel time is estimated to be less

than the augmentation time, but for grid networks the relabel time is estimated to be greater than the

augmentation time.
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Figure 9.3. Ratio of the virtual time to the CPU time for the
shortest augmenting path algorithm.
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Figure 9.4. Share of relabeling time in virtual time for the
shortest augmenting path algorithm.

Recall that the shortest augmenting path algorithm uses a number array to speed up its termination.

To judge the usefulness of this termination criteria, we also implemented the algorithm without it. Table

9.1 shows the average number of relabels and CPU times for these two versions of the algorithm. It is

evident from the table that the use of the number array characteristically reduces the running time of the

shortest augmenting path algorithm, and the reductionin running time increases with problem size.

numberof relabels

with number without
array number

array
1,380 47,282
4,343 294,900
12,816 1,044,614
21,102 2,054,433

CPU time
(in seconds)

with number without
array number

array
0.41 3.67
1.19 22.69
3.88 81.17
6.46 162.18

Table 9.1 Use of number array in speeding up the shortest augmenting path algorithm.

We also investigated how quickly flow reaches the sink as the algorithm progresses. It may be

valuable to know how quickly the flow reaches the sink for two reasons: first of all, in some applications it

may be satisfactory to find a flow that is nearly maximum, and so one can terminate the algorithm early.

Second, the information may be useful in the design of hybrid algorithms, which can sometimes combine the

n

500
1,000
2,000
3,000

1% 
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best features of two different algorithms. In Figure 9.5, we plotted the percentage of the maximum flow

that has reached the sink prior to "time p" where here time p refers to the time at which a proportion p of

relabels has been carried out. (The particular network is a layered network with n = 10,000 and d = 6.) For

this particular problem instance, the flow reaching the source increases almost linearly with the number of

augmentations. (The amount of flow in an augmentation is roughly constant over time.) But the rate of

change is quite nonlinear with the number of relabels. We observe that 90% of the total flow is sent within

10% of the total node relabels, and the remaining 10% of the total flow takes up 90% of the node relabels. In

other words, the time between successive augmentations increases over time, and the final augmentations

may be separated by far more relabels. Since the later part of the algorithm was taking a large proportion

of the running time, we tried a variety of techniques to speed up the later part of the algorithm; however,

none of these techniques yielded any significant improvement.
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Figure 9.5. Flow sent to the sink as a percentage of total relabels
and augmentations for the shortest augmenting path algorithm.

We use regression analysis to estimate the growth rate of the representative operation counts of the

shortest augmenting path algorithm as a function of the problem size. For the layered and grid networks,

the estimates for the arc-relabels and arc-augmentations are as follows :



arc-relabels

arc-augmentations

Layered Networks Grid Networks

We also wanted to determine how

the problem size parameters. For the

augmentations to be given by

the number of relabels and augmentations vary as a function of

layered networks, we found the estimates of relabels and

relabels

augmentations

Layered Networks Grid Networks

To visualize the quality of these estimates, we plot the ratio of predicted to actual arc-relabels and

arc-augmentations in Figure 9.6. Generally, these estimation errors are within 20%. We also conjectured

that for our network types, the shortest augmenting path algorithm will perform no more than n1 5

augmentations and will take a time bounded by O(n2 ). The plots shown in Figure 9.7 appear to justify our

both the conjectures.

32

0.65 x n1' 7 5 x d0' 71 0.07 x n1. 74

0.21 x n 1 56 x d1.3 4 1.77 x n1 5 4

0.04 x nl.72 x d-0. 2 5 0.618 x n1 75

0.14 x n 1.0 6 x d1 . 3 6 1.2 x n1 0 4



33

Grid NetworkI Arc-Relabels

- - Arc-
Augmentation

I I I I I I I I I I
500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n 

Figure 9.6. Ratio of predicted to actual arc-relabels and
arc-augmentations for the shortest augmenting path algorithm.

e~ Ap

|Grid Network

"-\CPU Time

cn2

Augmentations

1.5

I I I [ I I I51- 
500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n -*
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function of n for the shortest augmenting path algorithm.
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Capacity Scaling Algorithm

The capacity scaling algorithm for the maximum flow problem improves the worst-case complexity

of the shortest augmenting path algorithm by incorporating capacity scaling. In the capacity scaling

algorithm, we used a scale factor of 2. Our computational tests revealed that though the capacity scaling

algorithm improves the worst-case running time, it worsens the empirical running time. We shall now

present a few graphs that shed insight on the comparative behavior of the shortest augmenting path

algorithms and the capacity scaling algorithm. For the sake of brevity, we present results for the grid

networks only, since the behavior for the layered networks has been similar.

Number of augmentations
Augmentation time
Number of relabels
Relabel time
Total time

Shortest augmenting
path algorithm

O(nm)

O(n2m)

O(n2 )
O(nm)
O(n2m)

Capacity scaling
algorithm

O(m log U)
O(nm log U)

O(n2 log U)
O(nm log U)
O(nm log U)

Table 9.2 Comparative behavior of the shortest augmenting path and the capacity scaling algorithm in the

worst-case.

Table 9.2 presents the worst-case comparative behavior of these two algorithms. Observe that the

capacity scaling algorithm reduces the augmentation time but increases the relabel time; but overall the

time decreases. We present in Figure 9.8 the ratios of the number of arc-relabels and arc-augmentations

performed by the capacity scaling algorithm versus the shortest augmenting path algorithm (for layered

networks with d = 8). In Figure 9.9, we give the ratios of the running times of these two algorithms (for both

grid and layered networks).
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We observe from Figure 9.8 that the capacity scaling algorithm indeed performs fewer

augmentations, but more relabels than the shortest augmenting path algorithm. This is consistent with the

corresponding worst-case results stated in Table 9.2. Overall we find from Figure 9.9 that the capacity

scaling algorithm is about 1.5 to 5 times slower than the shortest augmenting path algorithm on our test

problems, depending upon the network type and network density. We also observe that for d = 6 or 8 or 10,

the relative performance of the capacity scaling algorithm is much better than for d = 4. This is possibly

due to the fact that the shortest augmenting path algorithm performs more augmentations for more dense

problems and their contribution to the CPU time is larger.

In contrast to the worst-case results, the capacity scaling algorithm is slower empirically than the

shortest augmenting path algorithm. The capacity scaling algorithm saves on the augmentation time, but

increases the relabel time; overall, more time is spent. We have observed earlier that empirically the

bottleneck step in the shortest augmenting path algorithm is the relabel time. Therefore, the capacity

scaling algorithm is not as attractive from an empirical point of view.

The capacity scaling algorithm uses a parameter called the scale factor, which denotes the factor

by which the approximation of the capacity increases from phase to phase. In our computational tests we

let = 2, but we also ran a series of tests with other scale factors to investigate the effects of the scale factor

on the CPU time.. As a function of the scale factor A, the worst-case time for the augmentations is O(nm 3
log 3 U) and the worst-case time for relabels is O(nm logy U) (see Ahuja and Orlin [1991]). We show in

Figure 9.10, the CPU time of the capacity scaling algorithm as D varies from 2 to 10. It is evident from the

figure that as 13 increases, the empirical running time decreases. AS D increases, the relabel time increases

while the augmentation time decreases; however, the relabel time is the asymptotic bottleneck operation,

and so larger scale factors tend to lead to a decreased running time. As a matter of fact, as increases, the

capacity scaling algorithm becomes more like the shortest augmenting path algorithm. (For very large,

the capacity scaling algorithm becomes the augmenting path algorithm.)
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Figure 9.10. CPU time for the capacity scaling algorithm as a function of the

scale factor A.

Dinic's Algorithm

We also conducted extensive tests of Dinic's algorithm. We noted earlier in Section 6 that Dinic's

algorithm is equivalent to the shortest augmenting path algorithm in the sense that they perform the same

sequence of augmentations The main difference between the two algorithms is that Dinic's algorithm

constructs layered networks and the shortest augmenting path algorithm maintains distance labels. Our

empirical tests yielded results that are consistent with this result and we found that for Dinic's algorithm

the number of augmentations (and arc-augmentations) and the arcs scanned to construct layered networks

have been comparable to corresponding numbers for the shortest augmenting path algorithm, and have

almost the same growth rates. Hence we have omitted the presentations of detailed results for this

algorithm. We graph the comparative running times of these two algorithms in Figure 9.11. We observe

that the running times of these two algorithms are within 20% of one-another, and the two algorithms have

roughly comparable CPU times.

I)Q
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Figure 9.11. Ratio of the computational time of Dinic's algorithm
and the shortest augmenting path algorithm.

Dinic's algorithm proceeds by constructing layered networks. In the worst-case, the algorithm may

construct as many as n layered networks, but in practice it is rarely so and the algorithm constructs far fewer
layered networks. In our tests, Dinic's algorithm constructs approximately n 7 layered networks. Figure 9.12

plots L/n0O7, and the plot suggests that n0 7 is a good upper bound on the number of layered networks formed.

In particular, there does not appear to be any trend where the ratio increases with increasing problem size.
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10. COMPUTATIONAL RESULTS OF PREFLOW-PUSH ALGORITHMS

In this section, we present computational results of the preflow-push algorithms described in Section

7. We tested the following preflow-push algorithms: highest-label, FIFO, LIFO, excess-scaling

algorithms, and Karzanov's algorithm. Out of these, we focus more on the highest-label algorithms, which

empirically is the fasterst of the algorithms that we tested.

Highest-Label Preflow-Push Algorithms

In Figure 10.1, we show the CPU times taken by the highest-label preflow-push algorithm for

layered as well as grid networks. We have shown earlier that for the preflow-push algorithms, the

representative operations are (i) r, the arc-relabels; and (ii) xp, the pushes. To identify the asymptotic

bottleneck operation, we plot the ratio cr/(xar + ap) as a function of n in Figure 10.2, which shows an upward

trend. This graph suggests that arc-relabels grow at a slightly faster pace than does pushes. This contrasts

with the worst-case analysis where arc-relabels grow at a much slower pace than the pushes. This finding

for the preflow-push algorithm is similar to our finding for the shortest augmenting path algorithm where

we observed that arc-relabels take more time empirically than the arc-augmentations.

,,
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We next estimated the CPU time using regression analysis. Once again, we refer to the estimate as

the virtual running time. We obtain the following expression of the running time (with R2 equal to 0.9996).

V(I)=5x106x r + 14x 106x ap.

Figure 10.3 gives the plot of V(I)/CPU(I). This plot confirms the high quality of the estimate. We

next estimate the proportion of the time spent on the pushes, and we plot this graph in Figure 10.4. We find

that though the highest-label preflow-push algorithm performs many more arc-relabels than the pushes

(for layered networks), it spends more time performing pushes than relabels. This is because we estimate

that a push takes about three times more CPU time than does a scan of an arc in a relabel.

. _
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Figure 10.3. Ratio of the virtual time to the CPU time for the
preflow-push highest label algorithm.
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Figure 10.4. Ratio of time for pushes to virtual time for the
preflow-push highest label algorithm.

We also assessed the growth rates of the two representative operation counts, arc-relabels and

pushes, as a function of n and d for both the network generators. We used regression analysis to estimate

these functions, which are given below.

Layered Network Grid Network

arc-relabels 1.03 x n1 .1 8 d 0.64 1.20 x n1 4 7

pushes 1.46 x n1 . 1 d0 .64 1.23 x n 28- -----------

Figure 10.5 plots the ratios of the estimated arc-relabels to the actual arc-relabels and the ratio of

the estimated pushes to the actual pushes for the grid network. We found most ratios to be in the interval

[0.9,1.1] for the grid and the layered networks. From the growth rates given in above table, we conjectured

that empirically the running time of the highest-label preflow-push algorithm for reasonably dense

networks will be bounded by c n1' 5, for some constant c. To verify this conjecture, in Figure 10.6, we plot the

ratio CPU time/(cn1. 5) for c = 10-6, and for all the network types and densities we find that these plots have

the downward trend.

I I I
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Figure 10.5. Ratio of predicted to actual arc-relabels and pushes
for the preflow-push highest label algorithm.
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Figure 10.6. Ratio of CPU Time taken to n' for the
preflow-push highest label algorithm.
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As described in Section 7, we implemented a two phase version of the preflow-push algorithms. The

first phase establishes a maximum preflow and the second phase converted this maximum preflow into a

maximum flow. The CPU times, relabels and the pushes, whose plots are given earlier include both phases.

We also investigated how these operations are split between the two phases. We show in Figure 10.7 the

ratio of the second phase pushes divided by the total pushes and also the second phase relabels divided by

the total relabels. Though these graphs are for the second phase of the highest-label preflow-push

algorithm applied to grid networks, they also represent typical behavior of all preflow-push algorithms on

grid as well as layered networks. It is evident from these figures that the pushes performed in the second

phase are typically less than 5% of the total pushes, and the percentage is decreasing for larger problem

sizes. In fact, we observed that the pushes performed in the second phase are typically less than n. For the

layered networks, the number of relabels in the second phase were zero for all instances that we tested, and

for grid networks the number of relabels in the second phase was quite low. From these observations, we can

conclude that the operations performed in the second phase are rather insignificant in comparison with the

first phase operations, and thus further speedups of the second phase of the preflow-push algorithm will

not have much of an impact on the CPU time.

Grid Net-rk

pushes

- --- relabels

\V./

I I I I I I I I I
I I I I I I I I I I

500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

Figure 10.7. Ratio of pushes and relabels in second phase to total pushes and total relabels.
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In several previous studies, researchers have investigated dynamic tree implementations of Dinic's

and preflow-push algorithms. The concensus conclusion of these studies is that dynamic tree implementations

are slower than the original implementations. Our computational results help to explain this phenomenon.

In general, dynamic trees decrease the time for nonsaturating pushes and augmentations at the expense of

increasing the time for relabels. Moreover, the dynamic tree data structure is quite intricate, and involves a

large constant overhead. Our computational study reveals that for both the network types arc-relabels grow

faster than the pushes and so dynamic trees increase the running time of the operation that is the bottleneck

empirically.

Excess-Scaling Algorithms

We also performed computational tests of the (original) excess-scaling algorithms and its two

improvements: the stack-scaling algorithm and the wave-scaling algorithm. Recall from Section 7 that all of

these algorithms have the following representative operations: (i) arc-relabels; (ii) pushes; and (iii) the

initialization time which is O(n log U). Figure 10.8 presents the CPU times taken by these three algorithms

on grid networks. The stack-scaling algorithm performs the least number of arc-relabels and pushes and

consequently ends up taking the least amount of CPU times. We suggest the following explanation for the

relative superiority of the stack-scaling algorithm over the other excess-scaling algorithms. First recall

that the original excess scaling algorithm performs push/relabels from a large excess node with the minimum

distance label, the stack-scaling algorithm performs push/relabels from a large excess node with the highest

distance label, and the wave-scaling algorithm is a hybrid of FIFO and highest-label pushing over large

excess nodes. We have found earlier that the highest-label preflow-push algorithm is the fastest maximum

flow algorithm. We suggest that the stack-scaling algorithm is superior to the other two scaling algorithms

because highest level pushing is superior to other pushing strategies.
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Figure 10.8. CPU times of the excess-scaling algorithms.

We also performed the virtual time analysis of the stack scaling algorithm. We found that for

large sized networks the algorithm spends roughly half of the time in performing pushes on layered

networks, and roughly 1/3 of the time for grid networks for the problem sizes that we tested. For grid

networks, we estimate that arc-relabels grow at the rate 1.14 x n1' 5 and that the pushes grow at the rate

0.88 x n 1 4 . Similar to other maximum flow algorithms, arc-relabels are estimated to grow at a faster pace

than the pushes.

Other Preflow-Push Algorithms

In this section, we present some results about the FIFO preflow-push algorithm, the lowest-label

preflow-push algorithm, and Karzanov's algorithm. We primarily focus on the comparative behavior of

these algorithms with the shortest augmenting path algorithm, Dinic's algorithm, highest-label preflow-

push algorithm, and the stack-scaling algorithm. Figure 1.1 gives the CPU times of these algorithms. It is

evident from this figure that the highest-label preflow-push algorithm is fastest among the algorithms

tested by us. The FIFO preflow-push algorithm is the second fastest algorithm for our tests. It is 1.5 to 2

times slower than the highest-label preflow-push algorithm. The performance of the stack-scaling

algorithm is also attractive; it is about twice slower than the highest-label preflow-push algorithm. We

find that the previous two best algorithms, namely Dinic's and Karzanov's algorithms, are substantially

slower than the recently developed preflow-push algorithms. For large size grid networks, these two

algorithms are about 7 to 10 times slower than the highest-label preflow-push algorithm. We can also

verify from Table 1.2 that for layered networks, the performance of the highest-label preflow-push

algorithms is even more attractive.

AA



We have observed earlier that all the maximum flow algorithms tested by us have two
representative operations: (i) arc-relabels; and (ii) either of arc-augentatio and pushes. To see, how the

counts of these two representative operations vary for various algorithms, we plot them in igure 10.9. We
observe that the comparative growth rates of these two representative operations exhibit the same
behavior as the growth rates of the computational times two es.
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To gain insight into how the pushes performed by the algorithms are split between the

nonsaturating and saturating pushes, we plot in Figure 10.10 the ratio of nonsaturating pushes by total

pushes. The percentage of the saturating pushes decreases as the problem size increases, but for the

highest-label preflow-push algorithm, the saturating pushes are about 40% of the total pushes. The

percentage of effort spent on on-saturating pushes is less for the more efficient algorithms. In particular,

the highest-label preflow-push algorithm performs the fewest number of non-saturating pushes, and the

shortest augmenting path algorithm performs the most.
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Figure 10.10. Ratio of saturating pushes to total pushes performed by the algorithms.

We also investigated how the flow reaches the sink for some preflow-push algorithms as the

algorithm proceeds. Figures 10.11(a) and 10.11(b) respectively give a plot of the amount of flow reaching

the sink as a function of the number of relabels and pushes. We observe that the highest-label preflow-

push algorithm sends all the flow in the last 5% of the iterations. The FIFO preflow-push algorithm starts

sending the flow into the sink after half of its execution is over, then sends flow at the steady pace, and

slows down in the last part of the algorithm.
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11. COMPUTATIONAL RESULTS FOR DIMACS BENCHMARK INSTANCES

To validate our findings obtained on tests on the grid and layered networks, we also tested our

algorithms on DIMACS benchmark instances; i.e., the problems used in "The First DIMACS International

Algorithm Implementation Challenge" held during October 1991 at RUTCOR, Rutgers University, Rutgers,

NJ. We tested our algorithms on three additional network generators: GL(Genrmf-Long), GW(Genrmf-

Wide), and WLM(Washington-Line-Moderate). The details of these networks can be found in Badics,

Boros, and Cepek [1992]. For the problems used, exact parameters for the families GL, GW, and WLM are

given in Table 11.1.

In Table 11.2, we give the CPU times of the maximum flow algorithms when applied to the above

benchmark instances. In Figure 11.1, we give a plot of these times. It is evident from these plots that

Goldberg-Tarjan's highest-label preflow-push algorithm is again the winner among all the maximum flow

algorithms and the Ahuja-Orlin-Tarjan's stack-scaling algorithm is the second best for GL and GW

networks; but for WLM networks the FIFO preflow-push algorithms is the second best algorithm. In Figure

11.2, we plot the ratios of the arc-relabels by the sum of arc-relabels and arc-pushes for the highest-label

preflow-push algorithm. We observe that the arc-relabels constitute a larger proportion of the total

representative operations and they do seem to possess a moderately increasing trend. To assess whether the

growth rate of the empirical running time of the highest-label preflow-push is O(n 1 5 ) for these class of

instances, we plot the ratio of CPU time x 106 /n 1 5 in Figure 11.3. The GW networks appear to have a growth

rate higher than n1' 5 . For this class, we plot the ratio of CPU time x 106 /n 1 '8 and find that n1' 8 is a

reasonable bound on its growth rate. We verified that all others major conclusions we list in Section 1 for

grid and layered networks are valid for the DIMACS benchmark instances too.



Name Parameters Nodes Arcs

GL1 a=6 b=31 cl =1 c2 =10,000 1,116 4,800

GL2 a=7 b=42 cl=l c2 =10,000 2,058 9,065

GL3 a=8 b=64 cl=l c2 =10,000 4,096 18,368

GL4 a=9 b=100 cl=l c2 =10,000 8,100 36,819

GL5 a=11 b=128 cl=l c2 =10,000 15,488 71,687

GL6 a=13 b=194 cl=l c2 =10,000 32,786 153,673

GW1 a=16 b=4 cl=l c2 =10,000 1,024 4,608

GW2 a=21 b=5 cl=l c2 =10,000 2,205 10,164

GW3 a=28 b=5 cl=l c2 =10,000 3,920 18,256

GW4 a=37 b=6 cl=l c2 =10,000 8,214 38,813

GW5 a=48 b=7 cl=l c2 =10,000 16,128 76,992

GW6 a=64 b=8 cl=l c2=10,000 32,768 157,696

WLM1 6 64 4 5 258 1,236

WLM2 6 128 4 8 514 3,965

WLM3 6 256 4 8 1,026 8,071

WLM4 6 512 4 11 2,050 22,289

WLM5 6 1024 4 16 4,098 65,016

WLM6 6 2048 4 22 8,194 179,235

TABLE 11.1 Details of DIMACS benchmark instances.
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