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Abstract

Until recently, fast algorithms for the maximum flow problem have

typically proceeded by constructing layered networks and establishing

blocking flows in these networks. However, in the recent years, new

"distance-directed" algorithms have been suggested that do not construct

layered networks but instead maintain a "distance label" with each node. The

distance label of a node is a lower bound on the length of the shortest

augmenting path from the node to the sink. In this paper, we develop two

new distance-directed augmenting path algorithms for the maximum flow

problem. Both the algorithms run in O(n2m) time. We show that these

algorithms are equivalent to Edmonds-Karp and Dinic's algorithm in the

sense that they enumerate the same augmenting paths in the same sequence.

Using a scaling technique, we improve the complexity of our

distance-directed algorithms to O(nm log U), where U denotes the largest arc

capacity. We also consider applications of these algorithms to unit capacity

maximum flow problems and a class of parametric maximum flow problem.

Subject classification.
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1. Introduction

In this paper, we suggest several new algorithms for the maximum

flow and parametric maximum flow problems. The maximum flow problem

is one of the most fundamental network problems and has been investigated

extensively in the literature (for example, by Ford and Fulkerson 1956, Dinic

1970, Edmonds and Karp 1972, Karzanov 1974, Cherkasky 1977, Malhotra et. al

1978, Galil 1980, Galil and Naamad 1980, Sleator and Tarjan 1983, Gabow 1985,

Goldberg 1985, Goldberg and Tarjan 1986, Ahuja and Orlin 1987). Efficient

algorithms for computing maximum flows are important not only because

they are applied directly to the analysis of traffic or communication networks,

but are often employed in the subproblems of other network problems. Some

of the network problems whose algorithms use the maximum flow

algorithm as a subroutine are the time-cost tradeoff problem in CPM

networks (Fulkerson 1961, Kelley 1961), the parametric network feasibility

problem (Minieka 1972), the network design problem (Hu 1974) and the

minimax transportation problem (Ahuja 1986). Moreover, it plays an

important role in solving the minimum cost flow problem (Rock 1980,

Tardos 1985, Bland and Jensen 1985). Recently, Goldberg and Tarjan (1987)

have developed the fastest known algorithm for the minimum cost flow

problem using an extension of their maximum flow algorithm as a major

subroutine.

Ford and Fulkerson (1956) formulated the maximum flow problem

and solved it using their augmenting path algorithm. Edmonds and Karp

(1972) showed that by augmenting flows along shortest paths, the augmenting
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path algorithm runs in time O(nm2) on networks with n nodes and m arcs.

Independently, Dinic (1970) suggested an O(n2m) algorithm which proceeds

by constructing shortest path networks (known as layered networks) and

establishing blocking (or maximal) flows in these networks. Dinic's

algorithm has been studied extensively by researchers who dramatically

improved its worst case running time using sophisticated data structures.

Most notable among these improvements is the 'dynamic trees' algorithm

developed by Sleator and Tarjan (1983). Their algorithm runs in O(nm log n)

steps. Gabow's (1985) scaling algorithm also uses Dinic's algorithm as a major

subroutine.

Recently, Goldberg (1985) and Goldberg and Tarjan (1986) developed a

new approach to solve the maximum flow problem that does not construct

layered networks but instead maintains "distance labels". Informally, a

distance label of a node is an integral lower bound on the length of the

shortest augmenting path from that node to the sink. A distance label is

called exact if it equals the length of the shortest augmenting path, and

approximate otherwise. Distance labels have several advantages over layered

networks. They are simpler to understand, easier to manipulate and have led

to more efficient algorithms. We refer to algorithms that utilize distance

labels as distance-directed algorithms. Goldberg (1985) developed the first

distance-directed algorithm. Subsequently, Goldberg and Tarjan (1986)

developed improved distance-directed algorithms. Currently, the fastest

algorithm to solve the maximum flow problem, due to Ahuja and Orlin

(1987a), is also a distance-directed algorithm. Its running time is

O(nm + n2 log U) steps, where U is an upper bound on the capacities of arcs

directed from the source.
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So far all the proposed distance-directed algorithms have been preflow

based algorithms, similar in essence to Karzanov's (1974) algorithm. In this

paper, we explore the use of distance labels in augmentation based

algorithms, i.e., algorithms which consist of repetitively augmenting flows in

augmenting paths from source to sink. We suggest two algorithms - the first

algorithm maintains distance labels approximately and the second algorithm

maintains exact distance labels. The first algorithm has dose resemblance to

Dinic's algorithm and the second algorithm can be viewed as an improved

implementation of Edmonds-Karp algorithm. We use a scaling technique to

improve the worst case complexity of our algorithms and also consider their

applications to unit capacity maximum flow problems and a class of

parametric maximum flow problem

Our motivation for the development of these methods is threefold.

First, the distance-directed algorithms have certain computational

advantages over the algorithms that construct layered networks. Second, our

development of distance-directed algorithms helps to provide a unifying

framework for maximum flow algorithms. Third, we provide additional

supportive evidence for the computational power of distance-directed

algorithms.

Our original motivation for conducting the research presented in this

paper was to search for new augmenting path algorithms that might run

more efficiently in practice than the best available algorithms. Dinic's

algorithm provided a natural starting point since it is considered by many to

be the most efficient augmenting path algorithm for solving the maximum

flow problem (see Cheung 1980, Glover et. al 1979, 1984, and Imai 1983). Our



preliminary testing of the algorithms in Ahuja and Orlin (1987b) indicates

that we have succeeded on this count. At the same time, we discovered both

theoretical and practical improvements of the Edmonds-Karp algorithm.

Our results also reveal a common link between Dinic's and

Edmonds-Karp algorithm. We show that the two distance-directed

algorithms and the algorithms of Edmonds-Karp and Dinic are equivalent in

the sense that they enumerate the same augmenting paths in the same

sequence, and are different only in the manner in which the augmenting

paths are obtained. If we consider the distance-directed algorithm with

approximate distance labels as Dinic's algorithm, then we would say that we

have found an efficient way to construct the layered networks dynamically.

In particular, we dynamically construct those arcs of the layered networks

which are traversed by Dinic's depth first search method. Our approach

allows one to move from layered networks to working with the original

network with no loss in the computational efficiency. Likewise, if we

consider the distance-directed algorithm with exact distance labels as

Edmonds-Kar- algorithm, we would say that the distance labels allow us to

locate the shortest augmenting paths in O(n) time on average instead of O(m)

time. In other words, we have found an efficient data structure for locating

the next shortest augmenting path quickly (in an amortized average case

sense).

This unification of the simple augmenting path algorithm and the

layered network approach also has pedagogical advantages. The distance

based approach not only bridges the gap between Edmonds-Karp algorithm

and Dinic's algorithm, but it helps to bridge the gap between these algorithms

III
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and the distance-based preflow methods of Goldberg (1985), Goldberg and

Tarjan (1986), and Ahuja and Orlin (1987a).

The paper is organized as follows. We present graph notations in

Section 2. In Sections 3 and 4, we describe two distance-directed augmenting

path algorithms for the maximum flow problem. The first algorithm uses

approximate distance labels and the second algorithm maintains exact

distance labels. Both the algorithms run in O(n2m) time on a network with

n nodes and m arcs. We show the equivalence of these algorithms with the

algorithm of Edmonds-Karp and Dinic in Section 5. In Section 6, we show

that Gabow's scaling technique can reduce the complexity of these algorithms

to O(nm log U), where U represents the largest integral capacity. The basic

idea behind the scaling algorithms is to augment flows along paths with

sufficiently large capacities. We next observe that if the number of capacitated

arcs p < m/2, then the time bound of scaling algorithms can be improved to

O(nm logm/p U). This observation leads to an O(nm) algorithm for finding

feasible flows in a sparse uncapacitated transportation problem under

reasonable assumptions.

In Section 7, we consider special cases of the maximum flow problem.

We show that the distance-directed algorithms can be used to obtain a

maximum flow in unit capacity networks in O(min (n 2 / 3 , m l /2 ) m) time, and

in unit capacity simple networks in O(n1 / 2 m) time. These bounds are same

as those obtained by Even and Tarjan (1975) for these problems and use

similar techniques, but our proofs are simpler.



In Section 8, we consider a class of parametric maximum flow

problems in which the capacities of some, say k, arcs emanating from the

source node are increasing linear functions of a parameter X and the

objective is to determine the maximum flow value for all values of

X E (0, oo). We show that Itai and Rodeh's (1985) algorithm, which utilizes

layered networks and runs in O(kn2m) time, can be implemented in O(n2m)

using distance labels. Indeed, the parametric maximum flow problem is

solved with no increase in the worst case running time over the

unparametrized problem. Independently, Gallo, Grigoriades and Tarjan

(1987) have solved the problem in O(nm log (n 2 /m) time by appropriately

generalizing the Goldberg-Tarjan algorithm.

2. Notation

Let G = (N, A) be a directed network with a positive integer capacity uij

for every arc (i, j) E A. Let n = I N I and m = I A I. The source s and sink t

are two distinguished nodes of the network. We assume without loss of

generality that the network does not contain multiple arcs. We further

assume that for every arc (i, j) e A, an arc (j, i) is also contained in A, possibly

with zero capacity. We define the arc adjacency list A(i) of a node i e N as the

set of arcs directed out of node i, i.e., A(i): = (i, k) e A: k e N).

Let U = max {uij}. The maximum flow problem is to determine a flow x
(i,j) E A

of maximum flow value v. Mathematically, this problem can be stated as

follows.

II
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Maximize v,

subject to

-v, if i=s,
Xi - xi O, if i s,t, for all ie N,

jeN je N v, if i =t,

O < xij < uij, for each (i, j) e A.

The residual capacity of any arc (i, j) e A with respect to a given flow x

is given by rij = uij - xij + xji. The network consisting of arcs with positive

residual capacity only is referred to as the residual network.

A distance function d: N - Z + for flow x is a function from the set of

nodes to the non-negative integers. We say that the distance function is valid

if it also satisfies the following two conditions:

C1. d(t) = O

C2. d(i) < d(j) + 1 , for every arc (i, j) A with rij > 0 .

We refer to d(i) as the distance label of node i. It is easy to demonstrate

using induction that d(i) is a lower bound on the length of the shortest path

from i to t in the residual network. If for each i N, the distance label d(i)

equals the length of the shortest path from i to t in the residual network,

then we call the distance labels exact; otherwise, we call d(i) approximate.

An arc (i, j) in the residual network is called admissible if it satisfies

d(i) = d(j) + 1. An arc which is not admissible is called an inadmissible arc.

The algorithms in this paper augment flows along paths consisting of

admissible arcs only. It can be shown that a path from source to sink in the
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residual network consisting only of admissible arcs is a shortest augmenting

path.

3. Distance-Directed Algorithm with Approximate Distance Labels

In this section, we describe our first distance-directed algorithm for the

maximum flow problem. This algorithm maintains approximate distance

labels. The algorithm proceeds by performing depth first search of the

residual network to identify shortest augmenting paths from source to sink.

The distance labels are used to direct the search. We refer to this algorithm as

DD1. Our presentation of the algorithm is similar to the presentation of

Dinic's algorithm by Tarjan (1983).

The algorithm DD1 first performs a breadth first search of G starting

with the sink node to compute the exact distance label d(i). At any general

step, the algorithm maintains a path P from the source node to some node i*

with the property that every arc in this path is admissible. We refer to node i*

as the current node and path P as the current path. We store the current path

using predecessor indices, i.e., pred(j) = i for each (i, j) E P. The algorithm

performs an advance step at the current node i in which it attempts to find

an admissible arc (i*,j*) directed from node i*. If such an arc is found, then it

is added to the current path and the advance step is executed at node j*.

Otherwise, d(i*) is increased, which makes the arc (pred(i*), i*) inadmissible.

We thus perform a retreat step. In this step, arc (pred(i*), i*) is deleted from

the current path and the advance step is executed at node pred(i*). Whenever

the sink node is reached by the current path, a maximum possible flow is

augmented on this path and the advance step is executed at the source. The
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algorithm terminates when d(s) > n indicating that there is no augmenting

path from source to sink.

We use the following data structure to select an admissible arc in the

advance step. We maintain with each node i a list, A(i), of arcs directed from

it. Arcs in each list can be arranged arbitrarily, but the order once decided

remains unchanged throughout the algorithm. Each node i has a current-arc

(i, j) which is the current candidate for the next advance step. Initially, the

current-arc of node i is the first arc in its arc list. This list is examined

sequencially and whenever the current arc is found to be inadmissible for

augmenting flow, the next arc in the arc list is made the current arc. When

all arcs in A(i) have been examined, it is time to update the distance label of

node i.

A formal description of the algorithm is given below followed by its

analysis.

initialize. Perform breadth first search of the residual network starting with

the sink node to compute the exact distance labels d(i). Let P = o and i = s.

Go to advance(i).

advance (i). Starting with the current-arc of node i, scan arcs in A(i) in order

until either (1) the end of arc list is reached, or (2) an admissible arc (i, j) is

found. In case 1, perform relabel (i) and go to retreat (i). In case 2, set

pred(j): = i and P: = P u {(i,j)}. If j = t then go to augment; else replace i by

j and repeat advance(i).
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augment. Let A be the minimum residual capacity among arcs in P. For

each (i, j)E P, substract A from rij and add A to rji. Set P: = , i: = s and go

to advance(i).

relabel(i). Update d(i) = min {d(j) + 1: rij > 0 and set the current-arc
(i,j) A(i)

of node i as the first admissible arc in A(i). If d(s) > n, then stop.

retreat(i). If i = s then go to advance(i); else delete (pred(i), i) from P,

replace i by pred(i) and go to advance(i).

We now show that the above algorithm correctly computes a

maximum flow in O(n 2m) time. Lemma 1 and Lemma 2 are implicit in the

paper by Goldberg and Tarjan (1986) in the context of preflow based methods.

We include the proofs here for the sake of completeness.

Lemma 1. The algorithm DD1 maintains valid distance labels at each step.

Moreover, at each relabel step the distance label of a node strictly increases.

Proof. We show that the algorithm maintains valid distance labels at

every step by performing induction on the number of augment and relabel

steps. The initialize step constructs valid exact distance labels. Assume

inductively that the distance function is valid prior to a step, i.e., satisfies the

validity conditions C1 and C2. A flow augmentation on arc (i, j) might

delete this arc from the residual network, but this does not affect the validity

of the distance function. Augmentation on arc (i, j) may create an additional

arc (j, i) with rji > 0 and an additional condition d(j) < d(i) + 1 needs to be

satisfied. This validity condition remains satisfied since d(i) = d(j) + 1 by the

property of the augmenting path. During a relabel step, the new distance label

II
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of node i is d'(i): = min{d(j) + 1: (i, j) e A(i) and rij > 0}, which is consistent

with the validity conditions. The relabel step is performed when there is no

arc (i, j) E A(i) with d(i) = d(j) + 1 and rij > 0. Hence d(i) < mind(j) + 1:

(i, j) E A(i) and rij > 0) = d'(i), thereby proving the second part of the lemma.

Theorem 1. The algorithm DD1 correctly computes a maximum flow.

Proof. The algorithm terminates when d(s) a n. Since d(s) is a lower

bound on the length of the shortest augmenting path from s to t, it implies

that there is no augmenting path from source to sink. This is the classical

termination criteria for the maximum flow algorithm.

It is easy to show the presence of a minimum cutset when d(s) n .

Let nk denote the number of nodes with distance label equal to k for

k n. Note that nk, mustbe zero for some k* < n - 1 as
n-1

, nk < n- 1. Let S: = {i N: d(i) > k*} and T: = i N: d(i) < k*}
k=O

Both the sets S and T are non-empty as s S and t T. Consider the

cutset Q: = {(i,j) E A: i e S and j T . By construction, we have

d(i) > d(j) + 1 for all (i, j) e Q. By property C2, rij = 0 for each (i, j) E Q.

Hence Q is a minimum cutset and the current flow is maximum. l

Lemma 2. (a) Each distance label increases at most n times. Consequently,

the total number of relabel steps is at most n2. (b) The number of augment

steps is at most nm/2.

Proof. Each relabel(i) step increases d(i) by at least one. After at most n

relabels of node i, d(i) > n. Then this node is never picked up during advance

step since d(s) < n and for every node k in the current path d(k) < d(s).
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Thus a node is relabeled at most n times and the total number of relabel step

is bounded by n2 .

Each augment step saturates at least one arc, i.e., decreases its residual

capacity to zero. Suppose that arc (i, j) becomes saturated at some iteration (at

which d(i) = d(j) + 1). Then no more flow can be sent on (i, j) until flow is

sent back from j to i (at which d'(j) = d'(i) + 1 d(i) + 1 = d(j) + 2). Hence,

between two consecutive saturations of arc (i, j), d(j) increases by at least 2

units. The arc (i, j) can become saturated at most n/2 times and the total

number of arc saturations is no more than nm/2. 

Theorem 2. The algorithm DD1 runs in O(n2m) time.

Proof. The step relabel(i) is performed O(n) times and each execution

requires 0(1 A(i) I ) time. The total time spent in relabel steps is thus

O( E n I A(i) i) = O(nm). Each retreat step requires 0(1) effort and is

executed O(n2) times, resulting in O(n 2) total effort. The number of flow

augmentations is O(nm) and each augmentation takes O(n) time. The total

time spent in augment steps is, therefore, O(n 2m). Further, the advance step

is executed O(n2m) times, since after at most n consecutive advance steps

either a relabel step is performed or a flow augmentation is done. The time

taken by an advance(i) step is 0(1) plus the time spent in replacing

current-arc by next-arc while finding an admissible arc. After I A(i) I such

replacements for node i, relabel(i) occurs. Thus, the total number of these

replacements is bounded by A n I A(i) I = O(nm). The time taken by all
is N

advance steps is O(n2m + nm) = O(n2m). The theorem now follows. 
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The proof of Theorem 1 also suggests an efficient alternative

termination condition for the algorithm DD1. The termination criteria of

d(s) > n is satisfactory from a worst case analysis, but may not be so efficient in

practice. We have observed empirically (Ahuja and Orlin (1987b)) that the

algorithm spends too much time in relabelings, a major portion of which is

done, after the maximum flow has already been established. The algorithm

can be sped up by detecting the presence of a minimum cutset earlier. We

accomplish this by maintaining the number of nodes nk with distance label

equal to k, for 0 < k < n . The algorithm updates this array after every relabel

operation and terminates whenever a gap in this array is found, i.e., a zero in

between two non-zero elements. The nodes across the gap constitute a

minimum cutset.

4. Distance-Directed Algorithm with Exact Distance Labels

In this section, we describe a variant of the algorithm DD1 which

maintains exact distance labels instead of approximate distance labels. The

resulting algorithm proceeds by maintaining a shortest path tree and

augmenting flows on the unique tree path from source to sink. We refer to

this algorithm as DD2.

A directed in-tree (rooted at sink) is a tree in which every node other

than the sink has exactly one out-going arc. Such a tree has a unique directed

path from every node in the tree to the sink. A shortest path tree is a directed

in-tree in which the unique path from every node to t is a shortest path in

the residual network. The following lemma gives a characterization of the

shortest path tree.
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Lemma 3. A directed in-tree T with respect to a flow x is a shortest path

tree if and only if there exists numbers d(i) satisfying the following

conditions:

C3. d(i) = d(j) + 1 and rij > 0, for each (i, j) e T; and

C4. d(i) < d(j) + 1, for each (i, j) E A with rij > 0.

Proof. Define the length of every arc (i, j) in the residual network as 1.

The above conditions are then equivalent to the optimality conditions of the

shortest path problem (Lawler 1976). 

The algorithm DD2 maintains a shortest path tree at every step. The

initial tree is constructed by performing a breadth first search of the residual

network starting at the sink node. The algorithm then repeatedly performs

two steps: augment and update-tree. In the augment step, a maximum

possible flow is sent in the tree path from s to t. The flow augmentation

decreases the residual capacity of some arcs in the path to zero thereby making

them inadmissible (violating condition C3). The update-tree step replaces

these inadmissible arcs by admissible arcs, one by one, and at the same time

keeps the condition C4 satisfied. The algorithm uses the same data structure

as in the algorithm DD1. A detailed description of the algorithm is given

below.

initialize. Perform breadth first search of the residual network starting

with the sink to determine the initial distance labels d(i) and the tree of

shortest paths T. Go to augment.

augment. Let P be the unique path in T from source to sink and A be the

minimum residual capacity among arcs in P. For each (i, j) E P, subtract A
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from rij and add A to rji. Let B denote the set of arcs whose residual

capacities are reduced to zero by flow augmentation. Go to update-tree.

update-tree. If B = , then go to augment. Otherwise delete an arc (i, j)

from B. Starting with the current-arc of node i, scan arcs in A(i) until either

(1) an admissible arc (i, k) is found, or (2) end of the arc list is reached. In case

1, replace (i, j) by (i, k) in T and repeat update-tree. In case 2, relabel node i

as d(i) = min {d(j) + 1: rij > 0} and set the current-arc of node i as the
(i,j) e A(i)

first admissible arc in A(i). There are two possibilities to consider.

(a) If d(i) > n, then delete node i and arc (i, j) from T. If node s is

deleted, then STOP, else repeat update-tree.

(b) If d(i) < n, then replace (i, j) by the current-arc of node i in T. Set

B = B u {(p, i): (p, i) T and repeat update-tree.

Lemma 4. The algorithm DD2 maintains a valid tree of shortest paths at

every step (except possibly during the execution of update-tree).

Proof. We use induction over the number of augment and update-tree

steps to show that the algorithm maintains a tree of shortest paths. By

construction, the initial tree is a tree of shortest paths. It is already shown in

Lemma 1 that flow augmentation keeps the condition C4 satisfied. The flow

augmentation, however, reduces the residual capacity of some arcs to zero

thus making them inadmissible. The update-tree step picks up these

inadmissible arcs one by one and replaces them by admissible arcs. A relabel

operation of node i makes all tree-arcs incident on node i inadmissible and
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they are added to the set of inadmissible arcs. Eventually, all tree-arcs are

admissible and we again get a tree of shortest paths. O

Theorem 3. The algorithm DD2 correctly computes a maximum flow in

O(n2m) time.

Proof. The algorithm terminates when d(s) > n implying that there is

no augmenting path from source to sink. The minimum cutset can be

constructed in the same way as in the algorithm DD1. The augment step is

performed O(nm) times, since each execution saturates at least one arc and

there can be O(nm) saturations. The augment step takes O(n) time per

execution and O(n2m) in total. The update-tree step, too, is performed

O(nm) times since it follows an augment step. The bottleneck operations in

the update-tree step are the time spent in scanning arcs to find admissible

arcs, and the time needed to relabel nodes. As in Theorem 2, both of these

operations take O(nm) time. The theorem now follows. E

5. Relationship to Edmonds-Karp and Dinic's Algorithms

In this section, we point out the relationship of our distance-directed

algorithms with the algorithms of Edmonds and Karp (1972) and Dinic (1970).

We show that all of these algorithms are equivalent in the sense that they

enumerate the same augmenting paths in the same sequence, and they are

different only in the manner in which these augmenting paths are obtained.

To begin with, we need some additional notations. We assume that

arcs in A are ordered in an arbitrary manner, but this ordering remains fixed

throughout the algorithm. The index o(i, j) indicates the sequence number of
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an arc (i, j) E A in this order and is called its arc-order. We further assume

that the order of the arcs in A(i) are compatible with the order or arcs in A in

that the arcs in A(i) are arranged in the increasing arc-order values for each

i e N. The result of this section are based on the assumption that whenever

arcs in A(i) are scanned by any algorithm, they are scanned in the above order.

We say that a vector a is lexicographically smaller than another vector

b if the first non-zero component of a - b is negative. We denote it as

a i b. We say that a path P is lexicographically smaller than another path Q

if path P taken as a sequence of arc-order values of arcs in the path is

lexicographically smaller than the corresponding sequence for path Q. An

augmenting path from source to some node i is called the least lexicographic

path if it is of shortest length and is lexicographically smaller than all other

shortest length paths from s to i in the residual network. We denote the least

lexicographic path of node i by PATH(i). We intend to show that the

algorithms of Edmonds and Karp and Dinic, as well as the algorithms DD1

and DD2 always generate least lexicographic paths and augment flows in

these paths. This establishes the equivalence of these algorithms.

The Edmonds-Karp algorithm determines the shortest path from

source to sink using breadth first search, i.e., by labeling nodes reachable from

the source and examining the labeled nodes in the first-in-first-out (FIFO)

order. The algorithm iteratively determines nodes at distance k (or in

layer k) and examines the arc adjacency lists of these nodes to determine

nodes in layer k + 1. The algorithm associates with each labeled node i a

unique augmenting path which can be determined by backtracking up to the

source node. We show inductively that this path is the least lexicographic

path to that node and nodes in a layer are determined in the order so that
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their least lexicographic paths are lexicographically increasing. We perform

induction on the number of nodes examined by the algorithm. Suppose that

a node i in layer k is examined and let jl, 2 ... , jw be the newly labeled

nodes, in order, in layer k + 1. Then, PATH(jl):= PATH(i) u{(i, )), for each

1: = 1,..., w. Clearly, PATH(jl) PATH(j2) .... J PATH(jw), since arcs in

A(i) are scanned in increasing arc-order values. Further, by the induction

hypothesis and the fact that nodes are examined in the FIFO order, all nodes

at level k that are yet to be examined have their least lexicographic paths

lexicographically greater than PATH(i). Hence, all paths of lengths k+l

generated by examining these nodes will be lexicographically greater than

each of the paths PATH(jl), PATH(j2),.. ., PATH(jl). This shows that our

claim is true with respect to the last examined node.

We next consider Dinic's algorithm as presented by Tarjan (1983). We

outline the algorithm here. We refer the reader to Tarjan (1985) for a

complete description of the algorithm. Dinic's algorithm performs a depth

first search of the layered network to identify an augmenting path from

source to sink. Note that limiting the search to the layered network is not

really restrictive since any path in the residual network, but not in the layered

network, is not the shortest augmenting path and will not be discovered by

any of these algorithms.

At any general step, Dinic's algorithm maintains a path from the

source to some node i in the layered network. We refer to node i as the

currrent node and its path as the current path. The current path is stored

using predecessor indices. The algorithm performs either an advance step or

a retreat step at current node. The advance step at node i is performed by

scanning its arc list to identify an arc (i, j) such that node j is in the next layer

11

I
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and is unblocked. If no arc is found, then a retreat step is performed. In this

step, node i is labeled as "blocked" and an advance step is performed at

pred(i).

We claim that the current path to the current node i is the least

lexicographic path PATH(i) and the current node is the node satisfying

PATH(i) PATH(l) for all unblocked nodes I at its layer. We prove this by

performing induction on the length of the current path. Each advance step at

node i adds an arc, say (i, j), of smallest arc-order value among admissible

arcs in A(i). Node j then becomes the new current node and PATH(i) u {(i,j)}

is the new current path. Clearly, the new current path is lexicographically

smaller than the path PATH(i) u {(i, )} for each (i, ) e A(i) - {(i, j)}. By the

induction hypothesis, it is also lexicographically smaller than any path from

the source to any node in layer k + 1 that does not pass through node i in

layer k. This shows that advance step preserves the induction hypothesis.

Each retreat step reduces the length of the current path and obviously does

not affect the validity of our claim.

The algorithm DD1 is very much similar to Dinic's algorithm except

that it operates on the residual network instead of the layered network. The

algorithm DD1, too, identifies the least lexicographic paths from source to

sink and augments flows in these paths. To show this, we may use the

following induction hypothesis: the current path to the current node i is the

least lexicographic path and current node is the node i satisfying PATH(i) 

PATH(I) among all nodes I with distance label equal to d(i). It can be easily

verified that the advance and retreat steps keep this hypothesis satisfied.
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The algorithm DD2 does not necessarily enumerate the same

augmenting paths as other algorithms if it is not initialized properly. This

algorithm identifies the first augmenting path by breadth first search starting

from sink, whereas Edmonds-Karp algorithm performs breadth first search

from source to find the first augmenting path. These two paths need not be

same, even if arc in A(i) are scanned in increasing arc-order values.

However, if the algorithm DD2 is initiated with a tree T for which every arc

(i, j) T is an admissible arc with smallest arc order value in A(i), then it

goes through the same sequence of iterations as other algorithms. Such a tree

can be obtained as follows: Perform breadth first search from sink to initialize

the distance labels. Mark the sink node, while all other nodes are unmarked.

Then, iteratively, select an unmarked node i, find the admissible arc (i, j) of

smallest arc-order value, mark node i and make node j the predecessor of

node i. Repeat this basic step until all nodes are marked.

Thus the algorithm starts with a tree whose every arc (i, j) is an

admissible arc of least arc-order value in A(i). This property is preserved by

the algorithm since during the update-tree step, arcs in A(i) are scanned in

the increasing arc-order values. It is easy to show, again using induction,

that the unique path in the tree from source to sink is the least lexicographic

path. Let P be the tree path and P* be the least lexicographic path from source

to sink. Clearly, I P I = I P* I. Assume inductively that the first k arcs of P

and P* are same. Let the k-th arc be (p, i), and let (i, j) be the admissible arc

of smallest arc-order value in A(i). By assumption, (i, j) is in P. Also, (i, j)

must be in P*, else it would contradict that P* is the least lexicographic path.

Hence the first k+l arcs of P and P* are same.
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The results given above establish the equivalence of the

distance-directed algorithms with the algorithms of Edmonds-Karp and

Dinic in the sense of augmenting path enumeration. The algorithms,

however, differ substantially in several computational aspects, such as the

manner in which these paths are obtained or the time needed to enumerate

paths. The Edmonds-Karp algorithm requires O(m) time to enumerate a

path, whereas other algorithms require O(n) time on average. Dinic's

algorithm maintains layered networks whereas the distance-directed

algorithms maintain distance labels. Dinic's algorithm runs better in worst

case when applied to unit capacity networks. However, it is not clear to us

whether the distance-directed algorithms applied as such will result in

improved algorithms for these networks. As we show in Section 7, that to

obtain improved distance-directed algorithms for unit capacity networks, we

need to resort to a two-phase technique.

6. Scaling Versions of Distance-Directed Algorithms

In this section, we consider scaling versions of the algorithms DD1

and DD2. We show that using a scaling technique, the complexity of the

algorithms DD1 and DD2 can be improved from O(n2m) to O(nm log U).

The resulting algorithms are, in spirit, similar to Gabow's (1985) scaling

algorithm for the maximum flow problem, but different in several

computational aspects.

The basic idea behind the scaling algorithms is as follows. Let a

A-optimal flow denote a flow which does not admit any augmenting path of

capacity at least A. Clearly, a zero flow is A-optimal for every A > U, and

an integral A-optimal flow for any A < 1 is a maximum flow. The scaling

algorithm starts with a A-optimal flow with A = flog Ul and at each

' 1_ ~ -___ _ 1 -___ _l __ __ ___.__ ______ --
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iteration replaces A by A/2 until A < 1. Given a A-optimal flow, the scaling

algorithm obtains a A/2-optimal flow by augmenting flows in paths of

capacity at least A/2, until no more augmenting paths exist. (Gabow's

algorithm sent flow of value exactly A/2.) An iteration during which A

remains unchanged is called a scaling iteration. Clearly, there are Flog U1 +1

scaling iterations.

We now show that each scaling iteration can discover at most 2m

augmenting paths. Consider a A-optimal flow. Let v(A) denote the current

flow value and v* denote the maximum flow value. Further, let X be the set

of nodes that admit augmenting paths from source of capacity at least A.

Since the flow is A-optimal, t X and the cutset (X, N - X) separates the

source from the sink. The residual capacity of every arc in the cutset

(X, N - X) is less than A and there are at most m arcs in the cutset.

Consequently, v* - v(A) < mA. Each augmenting path in the next scaling

iteration increases the flow value by at least A/2 units and this can happen at

most 2m times. (A more careful analysis bounds the number of

augmentations at m.)

The scaling algorithm employs the algorithm DD1 or DD2 as a

subroutine to transform a A-optimal flow into a A/2-optimal flow.

The only change that is called for in the algorithms DD1 and DD2 is that the

arcs with residual capacities less than A/2 are considered as "non-existent"

(they are treated the same as arcs with no capacity). The distance labels too are

defined with respect to arcs with rij > A/2. The bottleneck operation in the

algorithms DD1 or DD2 is the augmentation time. Since there are at most

2m augmenting paths per scaling iteration, the augmentation time is O(nm).

11

l
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Thus each scaling iteration requires O(nm) time and the algorithm runs in

O(nm log U) time. We summarize our discussion with the following result.

Theorem 4. Scaling versions of algorithms DD1 and DD2 run in

O(nm log U) time. E

The scaling approach can also be regarded as an improved version of

Edmonds and Karp (1972) maximum capacity augmentation algorithm.

Edmonds and Karp showed that if flow is augmented along paths with

maximum augmenting capacity, then O(m log U) augmenting paths are

enumerated. We have shown above that if flow is augmented along paths

with sufficiently large capacity, but not necessarily maximum, we again

generate O(m log U) augmenting paths. Whereas determining a maximum

capacity augmenting path requires O(m logn U) time (Gabow 1985),

determining a path with sufficiently large capacity requires O(m) time using

simple breadth first search, or O(n) time on average in the algorithms DD1

or DD2.

We now show that the complexity of the scaling algorithm can be

improved when a subset of arcs are capacitated while other arcs have infinite

capacities. It is, however, assumed that the maximum flow value is finite.

This problem arises, for instance, while finding a feasible flow in a sparse

uncapacitated transportation problem. Determining statistical security of a

tabular data can also be reduced to this problem (see Gusfield 1984).

The speed-up of the algorithm is obtained by using a scaling factor

higher than 2 depending upon the number of capacitated arcs. We use a

scale factor of 3 = max{2,m/pl} , where p is the number of capacitated arcs.

In the k-th scaling iteration, the scaling algorithm identifies augmenting
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paths of capacity at least U/3 k- ll and augments flow in these paths. After

logs U + 1 scaling iterations, the algorithm obtains a maximum flow. The

following theorem analyses the complexity of the modified scaling algorithm.

Theorem 5. Let 3 = Fm/pl and assume [ 2 2. Then the modified scaling

algorithm runs in O(nm log s U) time.

Proof. Consider a A-optimal flow. Let X be the set of nodes reachable

from s by augmenting paths of capacity at least A. The number of arcs in the

cutset (X, N - X) are no more than p, since no arc with infinite capacity can be

in the cutset. Thus the total residual capacity of arcs in this cutset is at most

pA. Each augmenting path in the next scaling iteration decreases the residual

capacity of this cutset by at least A/5 2 PA and this can happen at most m

times. Each scaling iteration, therefore, takes O(nm) time and the algorithm

runs in O(nm log s U) time. O

The scaling algorithm yields an almost optimum algorithm for a class

of feasibility problems in uncapacitated sparse transportation networks. For

this problem if U = O(n ( ° (1)) and m = (n 1+ ) for some e > 0 , the algorithm

takes O(nm logne n) = O(nm) time. This time bound matches the best known

time bound due to Ahuja and Orlin (1987) for solving this class of problems.

7. Application to Unit Capacity Networks

A network is called a unit capacity network if the capacity of every arc

in the network is one. A unit capacity network is called a simple network if

either the indegree or outdegree of each node is at most one. Determining

maximum flows in unit capacity networks is important in many situations

including that of determining connectivity of a network
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(Even and Tarjan 1975) or solving the bipartite matching problem. In this

section, we show that the distance-directed algorithms can be used to

determine the maximum flow in unit capacity networks in

O(min(m1 / 2 , n2 /3 ) m) time, and in simple network in O(n1 / 2 m) time.

These bounds are the same as those obtained by Even and Tarjan (1975) using

layered networks. Our analysis is, however, simpler and the algorithms are

likely to perform better in practice, too. The analysis here is not particular to

distance-directed algorithms and can be used to prove the time bounds for

Dinic's algorithm as applied to unit capacity networks.

Our algorithms are two-phase algorithms. In the first phase, we apply

either the algorithm DD1 or the algorithm DD2 with the modification that

we stop examining a node whenever its distance label is greater than or equal

to d* for a suitable choice of d*. This phase sends most of the flow from

source to sink. In the second phase, we successively identify augmenting

paths from source to sink using breadth first search and augment flows in

these paths.

We first note that the complexity of the first phase is O(d*m). The

bottleneck operation in the algorithms DD1 and DD2 is the flow

augmentation time. For the unit capacity networks, flow augmentation on

an arc immediately saturates that arc. Consequently, no arc is examined more

than O(d*) during flow augmentations, giving a bound of O(d*m). Other

operations too take O(d*m) time, since we stop examining a node whenever

its distance label exceeds d*. Let v' denote the flow value at the end of first

phase and v* denote the maximum flow value. We will choose d* so that

v*- v' = O(d*). This choice implies that the second phase identifies O(d*)
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augmenting paths and thus runs in O(d*m) time. This time is the same as

that of the first phase.

We first consider the unit capacity (non-simple) networks. For this

class of networks d* = min{2n2 /3 , m1 / 2} . Let us first examine the case when

d* = 2n2/3 . Let Vk: = i N: d(i) = k} , k = O, 1,. .. , d*. We refer to Vk as the
d*

set of nodes in the k-th layer. Clearly, d(s) > d*. Note that , I VkI < n- 1,
k=l

since the sink does not belong to the considered layers. It follows from the

conditions C1 and C2 that there are no arcs (i, j) in the residual network

with i E Vk, j E V l and k > I + 1. Hence, the set of arcs going from Vk to

Vk_1 for each k, 1 < k < d*, form a cutset in the residual network.

We claim that there must exist some layer k, for some 1 < k < d* such

that I Vk I < n1 / 3 and I Vk-l I < nl/ 3 . For, if not, then every alternate layer

must have nodes no less than n 1/ 3 and the total number of nodes in the

layers 1,...,d* would be n1 / 3' d*/2 = n leading to a contradiction. The

residual capacity of the cutset defined by the layers Vk and Vk-l is at most

I Vk I I Vk_l I <n2/ 3 . Thus, v* - v'< n2 /3 .

Next, consider the case when d* = m 1 /2 . Again, there must exist a

cutset defined by the layers Vk, Vk_l for some k, with 1 k < d*, whose

residual capacity is no more than m 1/ 2 . This follows from the fact that there

are ml /2 cutsets and each arc contributes the residual capacity of at most one

unit to at most one such cutset. Thus, v* - v' < m 1 / 2 . We have shown the

following result.

Theorem 6. The two-phase algorithm obtains maximum flow in a unit

capacity network in O(min (m 1 /2 , 2n2/ 3 ) m) time. I

II



28

A stronger result can be proved for the simple networks.

Theorem 7. The two-phase algorithm obtains maximum flow in a simple

network is O(n1/2 m) time.

Proof. Apply the algorithm with d* = n 1/ 2 and consider the resulting

layers of nodes Vk, 1 < k < n 1/2. Let the layer Vp have the smallest

number of nodes. Then I Vp I n 1 / 2 , else it would imply that the number of

nodes in all layers are strictly greater than n. Since each node has either

indegree or outdegree at most one, it allows at most one unit of additional

flow from source to sink. As all additional flow must pass through the layer

Vp, we get v* - v' < n 1 / 2 . The theorem now follows. O

8. Application to Parametric Maximum Flows

In this section, we consider a special, yet practically important, class of

parametric maximum flow problems. In this problem, some or all arcs

emanating from the source node have capacities that are increasing linear

functions of a parameter X, while other arcs have fixed capacities. We wish to

determine the maximum flow in the network for all values of e (0, o) .

We refer to this problem as the Source Parametric Maximum Flow (SPMF)

problem. This problem arises in information retrieval from a large shared

database (Eisner and Severance 1976), program module decomposition (Stone

1977), and scheduling transmission in a network (Itai and Rodeh 1985). (See

Gallo et. al 1987 for additional application of this problem. They consider the

problem in which arcs directed to the sink are also parametrized.)

The SPMF problem has been solved by Itai and Rodeh (1985) in

O(kn2 m) time using the proportional augmentation algorithm, where k is
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the number of arcs with parametric capacities. Proportional augmentation is

a technique for augmenting flows on a number of paths from different

origins to the same destination in a proportionate manner until one of the

arcs in these paths gets blocked. Itai and Rodeh's algorithm proceeds by

creating at most kn layered networks and constructing blocking flows in

these networks by proportional augmentation. Gusfield (1986) has reduced

the SPMF problem to solving at most k maximum flow problem. Recently,

Gallo, Grigoriadis and Tarjan (1987) have solved this problem in O(nm

log(n2 im) time. In this section, we show that Itai and Rodeh's algorithm can

be im:. oved by a factor of k if we use distance labels instead of layered

networks. This result is based on incorporating proportional augmentation

technique in the algorithms DD1 and DD2. Our algorithms run in O(n2m).

This bound is not as attractive as that of Gallo, Grigoriadis and Tarjan (1987),

but we anticipate our algorithms to be very useful in practice.

We refer to an arc (s, j) e A as a source arc. Let the capacity of each arc (i,

j) e A be uij + uij with uij > 0 for some source arcs only. Initially, a

maximum flow problem is solved with uij's as arc capacities. Let (W, W) be

the minimum cutset for which I W I is least among all minimum cutsets. If

(W, W) does not contain any source arc (s, j) with Usj > 0, then it remains a

minimum cutset for all e (0, *). Otherwise, the capacity of the cutset (W, W)

increases as increases and more flow can be sent from source to sink. Let

{j E W: Usj > 0} . The slope of the maximum flow function at X = 0 is

Y C* S

jE S

I11
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We now describe a method for the SPMF problem based on the

algorithm DD2. First, the source node and all of the source arcs are deleted

from the networks. Then, a breadth first search of the residual network is

performed starting at the sink node to initialize the distance labels and to

form the tree of shortest paths T spanning the nodes in W. The algorithm

repeatedly performs the proportional augmentation step and the update-tree

step. The update-tree step is same as described in the algorithm DD2,

whereas the proportional augmentation step is a generalization of the

augment step in the following manner. The proportional augmentation

sends a j flow from each j e S to the sink on the tree arcs, and the value

of a is chosen so that at least one tree arc becomes saturated. A detailed

description of this step is given below.

proportional augmentation.

(a) Set ij: = usj ,for each j S and 0, otherwise. Set ij: = O,for each

(i,j) T, and set T: =T.

(b) If the sub-tree T = o, then go to (c); otherwise select a leaf node i

of T. Let j: = pred(i). Set ij: = xi and update xi:= = i + 7j. Delete (i, j)

from the sub-tree T and repeat (b).

(c) mLet ir = i ij > 0 For each (i, j) e T, subtract ij fromLetA= (i, j) E T : >sA

rij and add ij A to rij. Let B denote the set of arcs whose residual

capacities are reduced to zero by flow augmentation.

The above step can be easily implemented in O(n) time. The algorithm

performs a update-tree step after every proportional augmentation. The
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nodes whose distance labels exceed n - 1 are not considered further. The set

S and the cutset (W, W) may have to be updated if distance label of some

node in S exceeds n - 1 . This updating is done at most n times since this

reduces I SI by at least one unit. The algorithm terminates when I S I = 0.

The slope of the maximum flow function at any step is given by

usj.
jES

This algorithm is same as the algorithm DD2 except that the simple

augmentation of flow is replaced by a proportional augmentations. Both

types of augmentation take O(n) time and saturate at least one arc in the

residual network. The complexity of the proportional flow algorithm is thus

O(n2m). We have obtained the following result.

Theorem 8. The proportional flow algorithm utilizing distance labels solves

the SPMF problem in O(n2m) time.

We can also use the algorithm DD1 instead of DD2 in the

proportional augmentation algorithm in the following manner. Initially, the

sink node is marked while all other nodes are unmarked. The algorithm

picks up an unmarked node i S and repeatedly performs advance and

retreat steps until either a marked node is reached or d(i) > n - 1 . In the

former case, all nodes in the path from i to the marked nodes are marked,

and in the later case node i is deleted from S. This process is repeated until

all nodes in S are marked. The marked nodes now define a subtree T

spanning nodes in S and some other nodes on which the proportional

augmentation, described above, is performed. All nodes except the sink are
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unmarked and this procedure is repeated until S = . The complexity of

this algorithm can be shown to be O(n2m).

9. Summary and Conclusions

We have considered several distance-directed augmentation

procedures for the maximum flow problem. In a number of cases, we have

shown that the distance-directed procedures can replace layered networks in

augmentation based algorithm. In this way, we have improved

Edmonds-Karp maximum flow algorithm, as well as their "greatest

augmenting path algorithm." We have also shown some important

connections between the Edmonds-Karp algorithm and Dinic's algorithm.

In particular, they enumerate the same augmenting paths and in the same

order.

In addition to improving the worst case complexity of several

algorithms, distance-directed approaches are also very flexible computational

tools. One can use them to create layered networks implicitly, and always

maintain the exact layered network as in DD2. Alternatively, one can use

them to create only part of the layered network as in DD1. Moreover, by

maintaining additional information such as the number of nodes whose

distance label is k for each k (or possibly maintaining the sum of the residual

capacities of admissible arcs directed from a node at distance k) one can

terminate the algorithm earlier, and possibly fine-tune the algorithm.

Finally, this approach does not require the creation of the layered network,

which in and of itself is a time and space consuming task.
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Finally, we believe that the distance-directed approaches here nicely

complement the distance-directed approaches of Goldberg (1985), Goldberg

and Tarjan (1986), and Ahuja and Orlin (1987a). As such, they may serve a

pedagogical role in the development of network flow theory.
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